0
Hopp til hovedinnhold

Matematisk modellering av bil-kollisjoner

Bernard Munyazikwiye at the Faculty of Engineering and Science has submitted his thesis entitled “Mathematical Modelling and Analysis of Vehicle Frontal Crash using Lumped Parameters Models”, and will defend the thesis for the PhD-degree Tuesday 31 March 2020. (Photo: Private)

The models were finally used to reconstruct the real crash signal. The crash analysis simulation can be used to assess the crashworthiness and investigate alternative ways to improve car design. The simulation can also be used to assess the injury of an occupant during a crash event.

Bernard Munyazikwiye

Ph.d.-kandidat og foreleser

Disputasen foregår digitalt på internett fordi UiA er stengt på grunn av Corona covid-19-situasjonen. Se nederst på siden hvordan publikum kan overvære disputasen.

Bernard Munyazikwiye  disputerer for ph.d.-graden med avhandlingen «Mathematical Modelling and Analysis of Vehicle Frontal Crash using Lumped Parameters Models” fredag 29. mai 2020.

Han har forsket fram en matematisk modell til analyse av kollisjoner mellom biler i doktorgradsavhandlingen «Mathematical Modelling and Analysis of Vehicle Frontal Crash using Lumped Parameters Models”.

Den matematiske modelleringen tar utgangspunkt i en kollisjon, som blir rekonstruert og analysert bakover – det vil si fra bilen(e) står stille etter kollisjonen til før kollisjonen begynner. Dette blir gjort fysisk mange ganger under utviklingen av bilen.

Modellerings-verktøyet bidrar til at bilprodusenter kan teste konstruksjoner i datamaskin før de endelige, fysiske kollisjonstestene, noe som sparer tid og penger. Det er også mulig å analysere personskader ved å bruke modelleringen.

Bernard Munyazikwiye har fulgt doktorgradsprogrammet ved Fakultet for teknologi og realfag, med spesialisering i mekatronikk.

Slik oppsummerer Bernard Munyazikwiye selv avhandlingen:

Mathematical Modelling and Analysis of Vehicle Frontal Crash using Lumped Parameters Models

It is a difficult task to understand fully the dynamic of a car crash.

Finding the crash pulse

To determine the crash pulse or the acceleration signal during an accident, crash reconstruction experts perform a reverse engineering process by starting from the final scene of the crash and work backward to identify the parameters of the car structure, a process known as system identification. This process is often very complex.

Hence, solving such a complex problem is crucial and requires precise data acquisition and the use of the right tools.

Crash reconstruction

In most frontal crashes, the occupant is the victim of the scenario then it was worth investigating the response of the occupant.

A vehicle to vehicle crash scenario was also investigated.

The accurate crash reconstruction was achieved with the help of a nature-inspired algorithm, which is a genetic algorithm and the frontal structure of the car involved in the crash was modeled as a piecewise function of displacement and velocity, respectively.

Reduces need for physical crash tests

The project is of interest to the community including end-users, car manufacturers, and car designers since the crash event can be predicted before performing a physical crash test.

This will reduce the cost and will allow designers to predict the behavior of the car when subjected to impact.

A full-scale crash test is conventionally used for vehicle crashworthiness analysis.

However, this approach is expensive and time-consuming. Vehicle crash reconstructions using different numerical modelling approaches can predict vehicle behavior and reduce the need for multiple full-scale crash tests, thus research on crash reconstruction has received great attention in the last few decades.

Math models for crash analysis

In this work, the author has developed simple tools (mathematical models) that could reconstruct the crash events (vehicle-to-barrier, vehicle-occupant, and vehicle-to-vehicle crashes) with sufficient accuracy.

The frontal crash is investigated because it is the most cause of injury and death as compared to other types of crash events. The vehicle frontal structure is the most affected zone of the car during a crash scenario.

In this work, the frontal structure of the car is estimated as spring-dampers connected to a mass or in the context of this work, these combinations are called Lumped parameters Models.

The models were finally used to reconstruct the real crash signal. The crash analysis simulation can be used to assess the crashworthiness and investigate alternative ways to improve car design.

The simulation can also be used to assess the injury of an occupant during a crash event. Within this framework, the advantages of the proposed methods are explained in detail, and suggested solutions are presented to address the challenges in the study.

Disputasfakta:

Kandidaten: Bernard Munyazikwiye (Masisi, Republic Democratic of Congo (1971), statsborgerskap: Rwanda) Electromechanical Engineering (BSc), Kigali Institute of Science and Technology, Rwanda (2004), Mechanical Engineering (MSc), Jomo Kenyatta University of Agriculture and Technology, Kenya (2010) Fra desember 2004 til dags dato: Tutorial Assistant, Assistant Lecturer, Lecturer at the University of Rwanda.

Prøveforelesning og disputas finner sted på internett, i konferanseprogrammet Zoom (se lenke under) fredag 29. mai 2020.

Disputasen blir ledet av dosent Tom Viggo Nilsen, Institutt for ingeniørvitenskap, UiA.

Prøveforelesning kl 10:15

Disputas kl 12:15

Oppgitt emne for prøveforelesning“Artificial Intelligence and Machine Learning as a tool for improving Vehicle Safety and Crashworthiness”

Tittel på avhandling: “Mathematical Modelling and Analysis of Vehicle Frontal Crash using Lumped Parameters Models

Søk etter avhandlingen i AURA - Agder University Research Archive, som er et digitalt arkiv for vitenskapelige artikler, avhandlinger og masteroppgaver fra ansatte og studenter ved Universitetet i Agder. AURA blir jevnlig oppdatert. 

Opponenter:

Førsteopponent: Professor Ole Balling, Aarhus Universitet, Danmark

Annenopponent: Førsteamanuensis Bjørn Haugen, NTNU Trondheim

Bedømmelseskomitéen er ledet av førsteamanuensis Rune Strandberg, Institutt for ingeniørvitenskap, UiA

Veiledere i doktorgradsarbeidet var professor Kjell Gunnar Robbersmyr, UiA (hovedveileder) professor Hamid Reza Karimi nå ved Politecnico di Milano, Italia og førsteamanuensis Dmitry Vysoschinskiy, UiA (medveiledere)

Slik gjør du som publikum:

Disputasen er åpen for alle, men for å følge prøveforelesning og disputas må du melde deg som publikummer på denne lenken: https://uia.pameldingssystem.no/disputas-bernard-munuyazikwiye Du vil da få en Zoom-lenke i retur.

Vi ber publikum om å ankomme digitalt tidligst ti minutter før oppgitt tid - det vil si  til prøveforelesningen 10:05 og disputasen tidligst kl 12:05. Etter disse klokkeslettene kan du når som helst forlate og komme inn igjen i møtet. Videre ber vi om at publikum slår av mikrofon og kamera, og har dette avslått under hele arrangementet. Det gjør du nederst til venstre i bildet når du er i Zoom. Vi anbefaler å velge «Speaker view». Dette velger du oppe til høyre i bildet når du er i Zoom.

Opponent ex auditorio:

Disputasleder inviterer til spørsmål ex auditorio i innledningen i disputasen, med tidsfrister. Disputasleders e-post er tilgjengelig i chat-funksjonen under disputasen. Spørsmål om ex auditorio kan sendes til disputasleder Tom Viggo Nilsen på e-post: tom.v.nilsen@uia.no

Avhandlingen er tilgjengelig her:

Lenke til disputasen, som formidles i konferanseprogrammet Zoom:

Disputasen er åpen for alle, men for å følge prøveforelesning og disputas må du melde deg som publikummer på denne lenken: https://uia.pameldingssystem.no/disputas-bernard-munuyazikwiye Du vil da få en Zoom-lenke i retur.

Her er framgangsmåten for å bruke Zoom: support.zoom.us om du ikke kommer inn ved å klikke på lenken.