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1. Consider the following second-order differential equation

y′′ − y′ − 2y = 4t2.

(a) Find the general solution of the corresponding homogeneous equa-
tion, demonstrate that your solution is a linear combination of two
linearly independent solutions.

(b) Find a particular solution of the non-homogeneous equation using
the method of undetermined coeffi cients.

(c) Find a particular solution of the non-homogeneous equation using
the method of variation of parameters.

(d) Write the general solution of the non-homogeneous equation.

(e) Find the solution of the initial-value problem with the following
initial conditions

y(0) = −2, y′(0) = 3.

(f) Answer the question: Is this solution unique? Explain why.

Remark. In this problem, it is allowed to use calculators for finding
derivatives, coeffi cients in Part b) and integrals in Part c).

2. A circuit has in series an electromotive force given by E = 200e−100t V,
a resistor of 10 Ω, an inductor of 0.05 H and a capacitor of 2× 10−4 F .
If the initial current and the initial charge on the capacitor are both
zero, find the charge on the capacitor q(t) at any time t > 0. Explain
the behavior of the solution when t→∞.
Remark. Use of calculators for finding coeffi cients is accepted.

3. Use the Laplace transform to find the solution of the following initial
value problem

y′′ + y = u3π(t),

y(0) = 1,

y′(0) = 0.

Remark. Use of calculators for finding coeffi cients is accepted.
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4. Consider the system
d−→x
dt

=

(
1 2
3 2

)
−→x .

(a) Find the eigenvalues and eigenvectors.

(b) Find the general solution.

(c) Classify the critical point (0, 0) according to its type and stability
properties.

(d) Explain the behavior of the solutions as t increases infinitely.

(e) Sketch the phase portrait of the system.

(f) Solve the nonhomogeneous system

d−→x
dt

=

(
1 2
3 2

)
−→x +

(
6et

−6e2t

)
.

5. Given the autonomous system

dx

dt
= x (y − 1) ,

dy

dt
= y (2− x− y) .

(a) Determine all critical points of the given system of equations.

(b) Find the corresponding linear system near each critical point.

(c) Find the eigenvalues of each linear system. What conclusions can
you then draw about the nonlinear system?

6. Consider the system

x′ = −y − x5,
y′ = x− y5.

(a) Show that the system is locally linear near the equilibrium point
(0, 0) .

(b) Find the corresponding linear system.

(c) Classify the critical point (0, 0) for the linear system according to
the type and stability.
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(d) What can you say in this case about the behavior of the nonlinear
system?

(e) Prove the stability of the critical point (0, 0) for the nonlinear
system using an appropriate Liapunov function.

7. Consider the following nonlinear system

x′ = y + x
(
25− x2 − y2

)
,

y′ = −x+ y
(
25− x2 − y2

)
.

(a) Transform the system to polar coordinates.

(b) Find all periodic solutions of the system and determine their sta-
bility.

GOOD LUCK!
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Integration Formulas

1.
∫
xndx = xn+1

n+1
, n 6= −1 2.

∫
dx
x

= ln |x|+ C

3.
∫

cosxdx = sinx+ C 4.
∫

sinxdx = − cosx+ C

5.
∫

tanxdx = − ln |cosx|+ C 6.
∫

cotxdx = ln |sinx|+ C

7.
∫

secxdx = ln |secx+ tanx|+ C 8.
∫

cscxdx = − ln |cscx+ cotx|+ C

9.
∫

secx tanxdx = secx+ C 10.
∫

cscx cotxdx = − cscx+ C

11.
∫

sec2 xdx = tanx+ C 12.
∫

csc2 xdx = − cotx+ C

13.
∫

dx√
a2−x2 = arcsin x

a
+ C 14.

∫
dx

a2+x2
= 1

a
arctan x

a
+ C

15.
∫

dx
|x|
√
x2−a2 = 1

a
arcsec x

a
+ C 16.

∫
exdx = ex + C

17.
∫

x2dx
1+x2

= x− arctanx+ C

∫
eax sin bxdx =

1

a2 + b2
eax [a sin bx− b cos bx]∫

eax cos bxdx =
1

a2 + b2
eax [a cos bx+ b sin bx]

Integration and differentiation rules

(f + g)′ = f ′ + g′,

(fg)′ = f ′g + fg′,(
f

g

)′
=

f ′g − fg′
g2

,

(f (g (x)))′ = f ′ (g (x)) g′ (x) ,∫
(f + g) dx =

∫
fdx+

∫
gdx,∫

udv = uv −
∫
vdu,∫

f (g (x)) d (g (x)) =

∫
f (u) du.
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Some Useful Formulas

e(a±ib)t = eat (cos bt± i sin bt) ,

s2 + as+ b =
(
s+

a

2

)2
+ b− a2

4
,

ex = 1 + x+
x2

2!
+
x3

3!
+ ...+

xn

n!
+ ...,

sinx = x− x3

3!
+
x5

5!
...+ (−1)n

x2n+1

(2n+ 1)!
+ ...,

cosx = 1− x2

2!
+
x4

4!
...+ (−1)n

x2n

(2n)!
+ ....

coshx =
1

2

(
ex + e−x

)
, sinhx =

1

2

(
ex − e−x

)
,

cos2 x =
1

2
(1 + cos 2x) , sin2 x =

1

2
(1− cos 2x) ,

cscx =
1

sinx
, secx =

1

cosx
,

sin
(π

2
− x
)

= cosx, cos
(π

2
− x
)

= sinx,

sin (−x) = − sinx, cos (−x) = cos x,

sin 2x = 2 sinx cosx, cos 2x = cos2 x− sin2 x,

sinx sin y =
1

2
[cos (x− y)− cos (x+ y)] ,

cosx cos y =
1

2
[cos (x− y) + cos (x+ y)] ,

sinx cos y =
1

2
[sin (x+ y) + sin (x− y)] .

6



Partial fractions

As2 +Bs+ C = 0 has the roots:

r1,2 =
−B +

√
B2 − 4AC

2A
, then

as+ b

As2 +Bs+ C
=


as+b

A(s−r1)(s−r2) , if r1, r2 are real,

as+b

A[(s−α)2+β2]
, if r1,2 = α± iβ - complex conjugate.

Separable equations

dy

dx
= f1(x)f2(y),

M(x) +N(y)
dy

dx
= 0,

M(x)dx+N(y)dy = 0.

Exact equations

M(x, y)dx+N(x, y)dy = 0,

∂M

∂y
=

∂N

∂x
,

ψ(x, y) =

∫
M(x, y)dx+

∫ [
N(x, y)−

∫
My(x, y)dx

]
dy.

Classes of UC functions

1) Pn(t) = a0t
n + a1t

n−1 + ...+ an−1t+ an,

2) Pn(t)eαt =
(
a0t

n + a1t
n−1 + ...+ an−1t+ an

)
eαt,

3) Pn(t)eαt cos βt =
(
a0t

n + a1t
n−1 + ...+ an−1t+ an

)
eαt cos βt,

Pn(t)eαt sin βt =
(
a0t

n + a1t
n−1 + ...+ an−1t+ an

)
eαt sin βt,
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where n is a nonnegative integer, α and β are real numbers.

A particular solution of

ay′′ + by′ + cy = g(t)

gi(t) Yi(t)

Pn(t) = a0t
n + a1t

n−1 + ...+ an−1t+ an ts (A0t
n + A1t

n−1 + ...+ An−1t+ An)

Pn(t)eαt ts (A0t
n + A1t

n−1 + ...+ An−1t+ An) eαt

Pn(t)eαt cos βt, Pn(t)eαt sin βt ts [Qn1(t)e
αt cos βt+Qn2(t)e

αt sin βt]

where

Qn1(t) = A0t
n + A1t

n−1 + ...+ An−1t+ An,

Qn2(t) = B0t
n +B1t

n−1 + ...+Bn−1t+Bn,

and s is the smallest nonnegative integer (s = 0, 1, or 2), that will ensure that
no term in Yi(t) is a solution of the corresponding homogeneous equation.
If r1 and r2 are the roots of the characteristic equation then the general

solution of the homogeneous DE can be found in the following form

Roots r1 and r2 General solution

r1 and r2 are real and unequal y(t) = C1e
r1t + C2e

r2t

r1 and r2 are real and equal, r1 = r2 = r y(t) = C1e
rt + C2te

rt

r1 and r2 are complex conjugate, r1,2 = α± iβ y(t) = C1e
αt cos βt+ C2e

αt sin βt
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A particular solution of the nonhomogeneous equation can be found as

g(t) = eat yp(t) =


Aeat, if r1 6= a, r2 6= a

Ateat, if r1 = a, r2 6= a

At2eat, if r1 = r2 = a

g(t) = K1 cos (βt) +K2 sin (βt) yp(t) =

 A1 cos (βt) + A2 sin (βt) , if r 6= ±βi
t (A1 cos (βt) + A2 sin (βt)) if r = ±βi

g(t) = Pn(t) yp(t) =


Qn(t) if r1 6= 0, r2 6= 0

tQn(t) if r1 = 0, r2 6= 0

t2Qn(t) if r1 = r2 = 0

where

Pn(t) = a0t
n + a1t

n−1 + ...+ an−1t+ an,

Qn(t) = A0t
n + A1t

n−1 + ...+ An−1t+ An.

Charge in Electrical Circuit

L
dI

dt
+RI +

1

C
Q = 0,

or

L
d2Q

dt2
+R

dQ

dt
+

1

C
Q = 0,

Damped Free Vibration

mu′′ + γu′ + ku = 0
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Variation of Parameters

For DE
ay′′ + by′ + cy = g(t)

the particular solution is found in the form

Y (t) = v1(t)y1(t) + v2(t)y2(t)

where y1(t), y2(t) is the fundamental set of the corresponding homogeneous
equation, v1(t), v2(t) are unknown functions their derivatives satisfy the fol-
lowing system

v′1(t)y1(t) + v′2(t)y2(t) = 0,

v′1(t)y
′
1(t) + v′2(t)y

′
2(t) =

g(t)

a
.

If the functions p(t), q(t), and g(t) are continuous on the open interval
I, and if the functions y1 and y2 are a fundamental set of solutions of the
homogeneous equation

ay′′ + by′ + cy = 0,

then a particular solution of the nonhomogeneous equation

ay′′ + by′ + cy = g(t)

is

Y (t) = −y1(t)
∫ t

t0

y2(s)g(s)

W (y1, y2) (s)
ds+ y2(t)

∫ t

t0

y1(s)g(s)

W (y1, y2) (s)
ds

where t0 is any conveniently chosen point in I. The general solution is

y(t) = c1y1(t) + c2y2(t) + Y (t).

Laplace Transform

L {f(t)} =

∫ ∞
0

f(t)e−stdt
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Laplace Transform Table

f(t) = L−1 {F (s)} F (s) = L {f(t)}
1 1

s

eat 1
s−a , s > a

tn, n is a positive integer n!
sn+1

, s > 0

sin bt b
s2+b2

, s > 0

cos bt s
s2+b2

, s > 0

eat sin bt b
(s−a)2+b2 , s > a

eat cos bt s−a
(s−a)2+b2 , s > a

tneat, n is a positive integer n!
(s−a)n+1 , s > a

uc(t)
e−cs

s
, s > 0

uc(t)f(t− c) e−csF (s), F (s) = L {f(t)}∫ t
0
f(t− τ)g(τ)dτ F (s)G(s)

δ(t− c) e−cs

f (n)(t) snF (s)− sn−1f(0)− ...− f (n−1)(0)

Inverse Matrix Formula

A =

(
a b
c d

)
, A−1 =

1

detA

(
d −b
−c a

)
.

Linear Systems with Constant Coeffi cients

x′ = Ax.

The solutions has the form

x = ξert,where r is the eigenvalue, ξ is the eigenvector
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Equation for Eigenvalues

det (A− rI) = 0.

Equation for Eigenvectors

(A− rI) ξ = 0.

In case r1 = r2 = r and there is only one eigenvector corresponding to r,
the form of the second solution is

x = ξtert + ηert,

where η satisfies
(A− rI) η = ξ.

Nonhomogeneous Linear System

x′ = P (t)x+ g(t),

has the solution

x(t) = Φ(t)Φ−1(t0)x
0 + Φ(t)

∫ t

0

Φ−1(s)g(s)ds

where Φ(t) is the fundamental matrix of the corresponding homogeneous
system.

Stability Properties of Linear and Almost Linear Systems

The nonlinear system x′ = Ax +g(x) called locally linear about the equi-
librium point x = 0 if

g(x) =

(
g1(x)
g2(x)

)
is such that

‖g(x)‖
‖x‖ → 0, as x→ 0,
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or
g1 (x, y)

r
→ 0,

g2 (x, y)

r
→ 0, as r → 0,

where
r = ‖g(x)‖ =

[
g21 (x, y) + g22 (x, y)

]1/2
.

Linear System Locally Linear System

r1, r2 Type Stability Type Stability
r1 > r2 > 0 N U N U
r1 < r2 < 0 N AS N AS
r1 < 0 < r2 SP U SP U
r1 = r2 > 0 PN or IN U N or SpP U
r1 = r2 < 0 PN or IN AS N or SpP AS
r1, r2 = λ± iµ, λ > 0 SpP U SpP U
r1, r2 = λ± iµ, λ < 0 SpP AS SpP AS
r1 = iµ, r2 = −iµ C S C or SpP I

Notation: N-node, PN - proper node, IN-improper node, SP - saddle
point, SpP - spiral point, C - center, U - unstable, AS-asymptotically stable,
S - stable, I-indeterminate.

Jacobian for Autonomous System

dx

dt
= F (x, y) ,

dy

dt
= G (x, y) ,

is

J =

(
Fx Fy
Gx Gy

)
.
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Lyapunov’s Theorems

Theorem 1 Suppose that an autonomous system

dx

dt
= F (x, y) ,

dy

dt
= G (x, y) ,

has an isolated critical point at the origin. If there exists a function V that
is continuous and has continuous first partial derivatives, that is positive
definite and for which the function

·
V (x, y) = Vx (x, y)F (x, y) + Vy (x, y)G (x, y)

is negative definite for some domain D in the xy− plane containing the

point (0, 0) , then the origin is an asymptotically stable critical point. If
·
V is

negative semidefinite then the origin is a stable critical point.

Theorem 2 Suppose that an autonomous system

dx

dt
= F (x, y) ,

dy

dt
= G (x, y)

has an isolated critical point at the origin. Let V be a function that is contin-
uous and has continuous first partial derivatives. Suppose that V (0, 0) = 0
and in every neighborhood of the origin there is at least one point at which V
is positive (negative). If there exists a domain D containing the origin such
that the function

·
V (x, y) = Vx (x, y)F (x, y) + Vy (x, y)G (x, y)

is positive definite (negative definite) on D, then the origin is an unstable
critical point.

Theorem 3 Suppose that an autonomous system

dx

dt
= F (x, y) ,

dy

dt
= G (x, y)
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has an isolated critical point at the origin. Let V be a function that is con-
tinuous and has continuous first partial derivatives. If there is a bounded
domain DK containing the origin where V (x, y) < K for some positive K,

V is positive definite and
·
V is negative definite, then every solution of the

system that starts at a point in DK approaches the origin as t approaches
infinity.

Theorem 4 The function

V (x, y) = ax2 + bxy + cy2

is positive definite if and only if

a > 0, 4ac− b2 > 0,

and is negative definite if and only if

a < 0, 4ac− b2 > 0.

Limit Cycles of the System

dx

dt
= F (x, y) ,

dy

dt
= G (x, y) .

Theorem 5 Let the functions F and G have continuous first partial deriv-
atives in the domain D of the xy-plane. A closed trajectory of the system
must necessarily enclose at least one critical point, the critical point can not
be a saddle point.

Theorem 6 Let the functions F and G have continuous first partial deriv-
atives in the simply connected domain D of the xy-plane. If

Fx +Gy

have the same sign throughout D then there is no closed trajectory of the
system lying entirely in D. (A simply connected two-dimensional domain is
the domain with no holes).
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Theorem 7 Let the functions F and G have continuous first partial deriv-
atives in the domain D of the xy− plane. Let D1 be a subdomain of D, and
let R be a region that consists of D1 and its boundary (all points of R are in
D). Suppose that R contains no critical points of the system. If there exists
a constant t0 such that

x = φ(t),

y = ψ(t)

is a solution that exists and stays in R for all t ≥ t0, then either

x = φ(t),

y = ψ(t)

is a periodic solution, or it spirals toward a closed trajectory as t → ∞. In
either case the system has a periodic solution in R.

Existence and Uniqueness Theorems

Theorem 8 (Theorem 2.4.1 (page 69)) If the functions p and g are con-
tinuous on an open interval I : α < t < β containing the point t = t0, then
there exists a unique function y = ϕ(t) that satisfies the differential equation

y′ + p(t)y = g(t)

for each t in I, and that also satisfies the initial condition

y(t0) = y0,

where y0 is an arbitrary prescribed initial value.

Theorem 9 (Theorem 2.4.2 (page 70)) Let the functions f and ∂f/∂y
be continuous in some rectangle α < t < β, γ < y < δ containing the point
(t0, y0). Then, in some interval t0 − h < t < t0 + h contained in α < t < β,
there is a unique solution y = ϕ(t) of the initial value problem

y = f(t, y), y(t0) = y0.
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Theorem 10 (Theorem 2.8.1 (page 113)) If f and ∂f/∂y are continu-
ous in a rectangle R : |t| ≤ a, |y| ≤ b, then there is some interval |t| ≤ h ≤ a
in which there exists a unique solution y = ϕ(t) of the initial value problem

y′ = f (t, y) , y (0) = 0.

Theorem 11 (Theorem 3.2.1 (page 146) (Existence and Uniqueness Theorem) )
Consider the initial value problem

y′′ + p(t)y′ + q(t)y = g(t),

y(t0) = y0,

y′(t0) = y10,

where p, q, and g are continuous on an open interval I that contains the
point t0. Then there is exactly one solution y = φ(t) of this problem, and the
solution exists and twice continuously differentiable through the interval I.
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