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CENTRE FOR THE SCIENCE OF LEARNING & TECHNOLOGY 

SLATE.UIB.NO  @SLATERESEARCH
▸ Established in 2016 by the Norwegian Ministry of Education & 

University of Bergen 

▸  A national research and competence centre  

▸ SLATE carries out research that will clarify and explore concepts such 
as learning analytics, big and small data in education, assessment for 
learning, and learning & technology, in all facets of human learning  

▸ Multidisciplinary  

▸ Conduct integrated research that will advance the frontiers of the 
sciences of learning, as well as inform education practice and policy



LEARNING ANALYTICS



LAK Single Keywords, Misiejuk (2017)



“LEARNING ANALYTICS IS THE MEASUREMENT, 
COLLECTION, ANALYSIS AND REPORTING OF DATA 
ABOUT LEARNERS AND THEIR CONTEXTS, FOR 
PURPOSES OF UNDERSTANDING AND OPTIMIZING 
LEARNING AND THE ENVIRONMENTS IN WHICH IT 
OCCURS"  
1st International Conference on Learning Analytics & Knowledge 

1st International Conference on Learning Analytics & Knowledge  



ISO/IEC JTC1/SC36 LA  
Hoel, T., Chen, W., & Cho, Y-S (2016) 



Siemens (2013)



Buckingham Shum, S. (2012)
UNESCO Policy Brief, November 2012 



Bienkowski (2012)



Jisc Learning Analytics Architecture 
https://analytics.jiscinvolve.org/wp/2016/06/28/a-technical-look-into-learning-analytics-data-and-visualisations/
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DEVELOPING A SEARCH STRING

58 keywords

problems being 
addressed

stakeholders level

implementation outcomes

*in cooperation with Kunnskapssenter for utdanning



TEACHERS

LEARNERS

FACULTIES

MANAGERS

 

FUNDERS

COURSE 
DESIGNERS

RESEARCHERS

Prinsloo et al. (2015)
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QUICK HISTORY



Misiejuk (2017)

USA (PURDUE), UK (OU), AUSTRALIA (UTS)

2017

https://solaresearch.org/



http://www.slate.uib.no/lasi-nordic2017





LEARNING ANALYTICS RESEARCH



3 distinct, but overlapping fields 

‣ Educational data mining (EDM) 

‣ Learning analytics and knowledge (LAK) 

‣ Big Data

LEARNING ANALYSIS AS A RESEARCH FIELD



‣ intelligent data mining 

‣ roots in Artificial Intelligence in Education & Intelligent 
Tutoring Systems research, as far back as the 1970s 

‣ applies computational approaches such as data mining, 
machine learning classification, clustering, Bayesian 
modelling, relationship mining, discovery with models, 
statistics, and visualisation to information generated in 
educational settings to better understand students and 
the settings in which they learn

EDUCATIONAL DATA MINING (EDM)



‣ Emerging research field and design discipline 

‣ LA is a set of data generation and analysis techniques 
and tools that may be utilised to gain a deep 
understanding of profound questions for research, policy 
and practice, generated by 21st Century learning and 
skills development 

‣ LAK facilitates a clear theoretical understanding of what 
is learning, how we assess it, how we foster it, and how 
we operationalise it in productive educational practices, 
teaching and learning environments

LEARNING ANALYTICS AND KNOWLEDGE (LAK)



‣ Generally refers to large amounts of data produced by a 
high number of diverse sources — but also means 
complex data 

‣ Data generated by people in action (e.g., computer logs, 
an essay) or generated by technology (e.g., sensor 
readings, photos, videos, GPS signals, etc.)  

‣ The analysis of “big” data sets generated in educational 
context could identify and validate patterns cross 
institutions, regions and countries, but also can benefit 
the school, the classroom teacher, and individual learners

BIG DATA IN EDUCATION



LEARNER-CENTRIC  
VS  

LEARNING-CENTRIC 
ANALYTICS



Learner-centric analytics measures student behaviour in 
technological environments 

‣ Learner engagement measured through the number of 
times a student visits learning materials, logs on an LMS, 
how long they view a flipped classroom video 

‣ Give input on design of learning environments, learning 
material, etc. 

    

LEARNER-CENTRIC VS LEARNING-CENTRIC ANALYTICS
(Stein 2012)

Learner engagement ≠ Learning



Learning-centric analytics has to do with conceptual growth 
and requires examining student artefacts to detect 
conceptual acquisition 

‣ focus is on "learning", "learning outcomes"  

‣ have to examine artefacts that students develop to 
identify if learning has taken place.   

‣ one’s understanding of learning, impacts the analytics 
design

LEARNER-CENTRIC VS LEARNING-CENTRIC ANALYTICS
(Stein 2012)





DEVELOPING A SEARCH STRING

58 keywords

problems being 
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stakeholders level

implementation outcomes

*in cooperation with Kunnskapssenter for utdanning



EXAMPLE: CORRELATION BETWEEN USER ACTIONS & FINAL GRADE

Gibson et al. (2016)



EXAMPLE: MEASURING STUDENT PERFORMANCE

Kennedy et al.  (2013)



EXAMPLE: DROPOUT PREDICTOR, INTERVENTION

Yasmin (2013)



EXAMPLE: DATA VISUALISATION, ACTIVITY ENGAGEMENT

Xie et al., 2014



EXAMPLE: MODELS OF EMOTION

Leony et al. (2015)



Tobarra et al. (2014); Gewerc-Barujel et al. (2014)

EXAMPLE: TOPICS & PARTICIPATION



EXAMPLE: DASHBOARDS FOR INSTRUCTORS

Lonn et al. (2015)



EXAMPLE: OU ANALYSE DASHBOARD FOR INSTRUCTORS
https://analyse.kmi.open.ac.uk 



EXAMPLE: VISUALISATIONS

Leadership 

Ship rescue 

Traffic events 

Building fire Heathland fire 

Pollution 
rescue 

Water tank  
Competence needs 
Emergency Manager 
Driver 
Smoke Diver 
Smoke Diver2 

Wasson & Hansen



EXAMPLE: ETHICS & PRIVACY



‣ Student/student behaviour modelling 

‣ Prediction of performance 

‣ Increase (self-) reflection & (self-) awareness 

‣ Prediction of dropout & retention 

‣ Improve assessment & feedback services 

‣ Recommendation of resources 

LEARNING ANALYSIS RESEARCH OBJECTIVES

Papamitsiou & Economides (2014) 
40 papers 2008-2013




‣ wide range of research topics   

‣ few impact studies (“very little credible research has 
demonstrated any large-scale benefits to learners or 
institutions”  (see also Ferguson et al. 2016)) 

‣ the definition of “learning analytics” is still under discussion 

‣ often lack of theoretical, historical or pedagogical 
perspective  “data rich —- theory poor”

‣ predominance of studies in higher education, informal 
learning, and distance education settings; few studies 
concerned about “schools” 

‣ privacy & ethics issues rarely addressed 

SOME IMPRESSIONS



Siemens (2013)

NO LEARNING SCIENTIST 
NO PEDAGOGICAL EXPERTISE

Kirschner (2016)





‣ wide gap between the potentials 
identified in research & implementation   

‣ tools focussed on visualising engagement 
and activity for early alerts & targets intervention 

‣ evidence of formal validation is lacking 
‣ lack of evidence of more effective learning 
‣ evidence of successful implementation is scarce 

‣ need for careful build-up of research and experimentation

MAIN FINDINGS



KEY QUESTIONS





KEY QUESTIONS
Do we see real improvements in learning outcomes for learners?  

We may be able to see patterns in learners’ data, but can we take action based on those 
patterns that improves their learning?  

We may be able to personalise learning based on learners’ data, but does that make any 
difference to how much they learn? 

Do learning analytics optimise the learning process?  

Does that lead to more efficient processes, allow resources to be better targeted, and 
save money and time?  

Do learning analytics lead to improvements in retention, completion and progression? 

If a system is deployed across an organisation, do the teachers and learners actually 
use it?  

Can the many ethical issues around privacy, transparency, surveillance, data 
ownership and control, and data protection be addressed effectively, or will they 

prove to be barriers? 



LEARNING ANALYTICS 
IS IN ITS INFANCY !
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