
Interpretable Architectures and Algorithms
for Natural Language Processing

Rohan Kumar Yadav

Interpretable Architectures and Algorithms for Natural
Language Processing

Doctoral Dissertation for the Degree Philosophiae Doctor (PhD) at
the Faculty of Engineering and Science, Specialisation in Artificial Intelligence

University of Agder
Faculty of Engineering and Science

2022

Doctoral Dissertations at the University of Agder 388
ISSN: 1504-9272
ISBN: 978-82-8427-101-9

©Rohan Kumar Yadav, 2022

Printed by 07 Media
Oslo

Preface

The foundation of this research was initially triggered when I first started to work on machine
learning models during my master’s degree. I then decided to move forward my research
along machine learning. Due to immense amount of data available and future scope in the
field of language, I decided to pursue my PhD in the field of Natural Language Processing.
This dissertation is a result of the research work carried out at the Department of Information
and Communication Technology (ICT), University of Agder (UiA), Grimstad, Norway, from
September 2019 to June 2022. During my Ph.D. study, my main supervisor has been Associate
Professor Lei Jiao, UiA, and my co-supervisor has been Professor Morten Goodwin, UiA,
Norway.

v

Acknowledgments

First of all, I would like to express my intense gratitude to my supervisor, Associate Professor
Lei Jiao. Without his assistance and guidance, this endeavor would not have been possible. His
encouragement, enthusiasm, and vision always motivated me to do fruitful research. I am deeply
indebted to him for his meticulous reviews of my manuscripts. His comments and feedback
always helped to ensure the manuscripts with high quality. His contribution in my personal and
professional development is enormous. During the ups and downs of the journey, he is the only
person who always came with a solution and showed the next logical step.

I am grateful to my co-supervisor Professor Morten Goodwin for his support and guidance in
my research. His insightful comments and feedback always helped to improve the quality of
the manuscripts. Morten has been and still is one of my mentors in Deep Learning and Natural
Language Processing. He is an expert in AI, whom I relied on during my time as a PhD student.
Both my supervisors have not only played the role of advisors but also have been guardians.

I would also thank Ole-Christoffer Granmo who is the head of Centre for Artificial Intelli-
gence Research (CAIR) for constantly supporting me with various aspects of NLP and Tsetlin
Machine. He has been one of the important guidance during my research journey. His help and
support with Tsetlin Machine has been immense that lead me to have high class papers. I wish to
thank the Ph.D. coordinators at the Faculty of Engineering and Science, UiA, Kristine Evensen
Reinfjord and Emma Elisabeth Horneman for their administrative support. I also would like to
thank all the professors at the Department of ICT who always encouraged and motivated me.

I am also grateful to my teammates in CAIR for their feedback, help, and encouragements
through these years. I really enjoyed the technical as well as non-technical discussions that we
had in the CAIR group. Many thanks to Bimal Bhattarai, Rupsa Saha, Ahmed Abdulrahem
Abouzeid, Svein Anders Tunheim, Saeed Gorji, Jivitesh Sharma, and Ayan Chatterjee for their
support throughout the Ph.D. journey.

Although far away from my home country, Nepal, where my family lives, the love, encour-
agement, and support that I receive from my parents, Rudra Prasad Yadav, Shila Yadav, and my
sister Sneha Yadav have been immense. Taking this opportunity, I express my eternal gratitude to
them for their blessings, love, understanding, and support. Their confidence in me is the source
that leads me to every tiny success in my life. I also take great pride in thanking my wife, Barkha
Sah, who always supported, motivated, and encouraged me in this endeavor.

vi

vii

Dedicated to my parents

Rudra Prasad Yadav and Shila Yadav

And my loving wife

Barkha Sah

Abstract

Natural Language Processing (NLP) is one of the branches of Artificial Intelligence (AI) that
teaches computers to understand, process, and generate language. Recently, deep neural networks-
based (DNNs) NLP have gained huge popularity for their ability to accomplish various tasks in
NLP, such as text classification, sentiment analysis, information retrieval, machine translation,
and reading comprehension. Some transformer-based models such as BERT and GPTs are fine
examples that achieve the state-of-the-art performance in many NLP tasks. However, these
models being so huge are very difficult for humans to understand the underlying concept of
the model, making them arguably BlackBox in nature. More specifically, for the downstream
application of NLP, these models are far from perfect that can provide any logical explanation
of the model. Moreover, the necessity of explanability in NLP comes into the picture when
sensitive information needs to be evaluated out of the model. Such necessity of explainable NLP
escalates mostly in the education domain, legal document analysis, and medical diagnosis using
Electronic Health Records (EHR). As we know, these tasks are mostly solved based on accuracy
by the big models in NLP and there is a big problem of lack of explainability. Even though
recent attempt of explaining attention weights seems hopeful, it is merely a mathematical weight
over input rationales rather than logical explanation of the model. Hence, in this thesis, we have
designed various interpretable architectures and algorithms that are useful for the application of
explainable NLP. Our proposed algorithms generally apply to most of the NLP tasks that require
human-level explanation. The primary focus of this thesis is to enhance the state of the art not
only in terms of accuracy but also for the transparency and explainability of NLP models, which
have been addressed on a limited scale before.

This thesis has two parts: Firstly, we introduce the human level-interpretable models using
Tsetlin Machine (TM) for NLP tasks. Secondly, we present an interpretable model using DNNs.
The first part combines several architectures of various NLP tasks using TM along with its
robustness. We use this model to propose logic-based text classification. We start with basic
Word Sense Disambiguation (WSD), where we employ TM to design novel interpretation
techniques using the frequency of words in the clause. We then tackle a new problem in NLP,
i.e., aspect-based text classification using a novel feature engineering for TM. Since TM operates
on Boolean features, it relies on Bag-of-Words (BOW), making it difficult to use pre-trained
word embedding like Glove, word2vec, and fasttext. Hence, we designed a Glove embedded TM
to significantly enhance the model’s performance. In addition to this, NLP models are sensitive
to distribution bias because of spurious correlations. Hence we employ TM to design a robust
text classification against spurious correlations.

The second part of the thesis consists interpretable model using DNN where we design a
simple solution for complex position dependent NLP task. Since TM’s interpretability comes

viii

ix

with the cost of performance, we propose an DNN-based architecture using a masking scheme on
LSTM/GRU based models that ease the interpretation for humans using the attention mechanism.
At last, we take the advantages of both models and design an ensemble model by integrating
TM’s interpretable information into DNN for better visualization of attention weights.

Our proposed model can be efficiently integrated to have a fully explainable model for NLP
that assists trustable AI. Overall, our model shows excellent results and interpretation in several
open-sourced NLP datasets. Thus, we believe that by combining the novel interpretation of TM,
the masking technique in the neural network, and the integrated ensemble model, we can build a
simple yet effective platform for explainable NLP applications wherever necessary.

x

Sammendrag

Natural Language Processing (NLP) er en av grenene innen kunstig intelligens (AI) som lærer
datamaskiner å forstå, behandle og generere språk. Nylig har løsninger basert på dype nevrale
nettverk (DNN) fått stor popularitet pga. deres evne til å utføre ulike oppgaver i NLP, som
tekstklassifisering, sentimentanalyse, informasjonshenting, maskinoversettelse og leseforståelse.
Transformatorbaserte modeller som BERT og GPT er gode eksempler på dette og oppnår topp
ytelse i mange NLP-oppgaver. Imidlertid er disse modellene så enorme at det er veldig vanskelig
for mennesker å forstå det underliggende konseptet. Dette gir dem en BlackBox natur. Mer
spesifikt, for nedstrømsapplikasjonen av NLP, er disse modellene langt fra perfekte når det
gjelder å gi en logisk forklaring på modellen. Dessuten kommer nødvendigheten av forklarbarhet
i NLP inn i bildet når sensitiv informasjon skal vurderes ut av modellen. Forklarlig NLP er
særlig påkrevd innen utdanningsdomenet, juridisk dokumentanalyse og medisinsk diagnose
ved bruk av elektroniske helsejournaler (EPJ). Som vi vet løses disse oppgavene for det meste
basert på nøyaktigheten av de store modellene i NLP, og det er et stort problem med manglende
forklarbarhet. Selv om nylige forsøk på å forklare via oppmerksomhetsvekter virker lovende,
er dette bare en matematisk vekting over input-rasjonale snarere enn en logisk forklaring av
modellen. Derfor har vi i denne oppgaven designet ulike tolkbare arkitekturer og algoritmer som
er nyttige for bruk av forklarbar NLP. Våre foreslåtte algoritmer gjelder generelt for de fleste
NLP-oppgavene som krever forklaring på menneskelig nivå. Hovedfokuset i denne oppgaven
er å forbedre oppnåelig ytelse, ikke bare når det gjelder nøyaktighet, men også når det gjelder
åpenhet og forklarbarhet av NLP-modeller. Dette har vært behandlet bare i begrenset skala
tidligere.

Denne oppgaven har to deler: For det første introduserer vi menneske-tolkbare modeller ved
å bruke Tsetlin Machine (TM) for NLP-oppgaver. For det andre presenterer vi en tolkbar modell
ved bruk av DNN. Den første delen kombinerer flere arkitekturer for ulike NLP-oppgaver ved
bruk av TM sammen med denne modellens robusthet. Vi bruker denne modellen til å foreslå
logikkbasert tekstklassifisering. Vi starter med grunnleggende Word Sense Disambiguation
(WSD), der vi bruker TM til å designe nye tolkningsteknikker ved å bruke hyppigheten til ordene
i setningen. Vi takler deretter aspektbasert tekstklassifisering som er et nytt problem i NLP,
ved å bruke en ny funksjonsteknikk for TM. Siden TM opererer på boolske funksjoner, er den
avhengig av Bag-of-Words (BOW), noe som gjør det vanskelig å bruke forhåndstrente ordinnbyg-
gingsmodeller som Glove, word2vec og fasttext. Derfor designet vi en Glove embedded TM
for å forbedre modellens ytelse betydelig. I tillegg til dette er NLP-modeller følsomme for
distribusjonsskjevhet på grunn av falske korrelasjoner. Derfor bruker vi TM for å designe en
robust tekstklassifisering mot falske korrelasjoner.

Den andre delen av oppgaven består av en tolkbar modell ved bruk av DNN hvor vi designer
en enkel løsning for komplekse posisjonsavhengige NLP-oppgaver. Siden TMs tolkbarhet
kommer med kostnadene når det gjelder ytelse, foreslår vi en DNN-basert arkitektur ved å bruke
et maskeringsskjema på LSTM/GRU-baserte modeller som letter tolkningen for mennesker ved å
bruke oppmerksomhetsmekanismen. Endelig tar vi fordelene med begge modellene og designer
en ensemblemodell ved å integrere TMs tolkbare informasjon i DNN for bedre visualisering av
oppmerksomhetsvekter.

Vår foreslåtte modell kan integreres effektivt til en fullstendig forklarbar modell for NLP

xi

som bidrar til pålitelig AI. Samlet sett viser modellen vår utmerkede resultater og tolkning
i flere åpne NLP-datasett. Dermed tror vi at ved å kombinere den nye tolkningen av TM,
maskeringsteknikken i det nevrale nettverket og den integrerte ensemblemodellen, kan vi bygge
en enkel, men effektiv plattform for forklarbare NLP-applikasjoner der det er nødvendig.

Publications

The author of this dissertation is the first author and the principal contributor of all the included
papers listed below. Papers A-F in the first set of the following list are selected to represent
the main research achievements and are reproduced as Part II of this dissertation. Other papers
which are listed in the second set are some other contributions towards Artificial Intelligence
Research.

Papers Included in the Dissertation

Paper A Yadav, R. K., Jiao, L., Granmo, O., and Goodwin, M., “Interpretability in Word Sense
Disambiguation using Tsetlin Machine.”, In International Conference on Agents and
Artificial Intelligence (ICAART), pp. 402-409. SciTePress, 2021.

Paper B Yadav, R. K., Jiao, L., Granmo, O., and Goodwin, M., “Human-Level Interpretable
Learning for Aspect-Based Sentiment Analysis.”, In 35th AAAI Conference on Artifi-
cial Intelligence (AAAI), pp. 14203-14212., 2021.

Paper C Yadav, R. K., Jiao, L., Goodwin, M., and Granmo, O., “Positionless aspect based
sentiment analysis using attention mechanism.”, Knowledge-Based Systems, Volume
226, Elsevier, May, 2021.

Paper D Yadav, R. K., Jiao, L., Granmo, O., and Goodwin, M., “Enhancing Interpretable
Clauses Semantically using Pretrained Word Representation.”, In BlackboxNLP: Ana-
lyzing and Interpreting Neural Networks for NLP, pp. 265–274. ACL, 2021.

Paper E Yadav, R. K., Jiao, L., Granmo, O., and Goodwin, M., “Robust Interpretable Text
Classification against Spurious Correlations Using AND-rules with Negation.”, In
International Joint Conference on Artificial Intelligence (IJCAI), 2022.

Paper F Yadav, R. K., Nicolae, D.C., “Enhancing Attention’s Explanation Using Interpretable
Tsetlin Machine.”, Algorithms, 15, no. 5: 143, MDPI, 2022.

xii

xiii

Other Publications

1. Yadav, R. K., Bhattarai, B., Jiao, L., Granmo, O., and Goodwin, M., “Indoor Space
Classification Using Cascaded LSTM.”, In IEEE Conference on Industrial Electronics and
Applications (ICIEA), pp. 1110-1114. IEEE, 2020.

2. Abeyrathna, K.D., Bhattarai, B., Goodwin, M., Gorji, S.R., Granmo, O., Jiao, L., Saha,
R., Yadav, R. K., “Massively Parallel and Asynchronous Tsetlin Machine Architecture
Supporting Almost Constant-Time Scaling.”, In International Conference on Machine
Learning (ICML), PMLR, 2021.

3. Tunheim, S., Yadav, R. K., Jiao, L., Shafik, R., Granmo, O., “Cyclostationary Random
Number Sequences for the Tsetlin Machine.”, In IEA-AIE, 2022.

4. Sharma, J., Yadav, R. K., Granmo, O., Jiao, L., “Drop Clause: Enhancing Performance,
Interpretability and Robustness of the Tsetlin Machine.”, In Arxiv, 2021.

5. Nicolae, D.C., Yadav, R. K., Tufiş, D, “A Lite Romanian BERT: ALR-BERT.”, Computers,
MDPI, 2022.

Contents

Abstract viii

List of Publications xii

List of Figures xviii

List of Tables xxi

I Main Chapters 1

1 Introduction 3
1.1 Motivation and Research Questions . 4
1.2 Publications . 7
1.3 Thesis Outline . 9

2 Background 11
2.1 Interpretable Machine Learning . 11

2.1.1 Linear Regression . 12
2.1.2 Decision Tress . 13
2.1.3 Naive Bayes Classifier . 14
2.1.4 Tsetlin Machine . 15

2.2 Deep Learning . 16
2.2.1 Deep Neural Networks . 17
2.2.2 Recurrent Neural Network . 17
2.2.3 Long-Short Term Memory (LSTM) 18
2.2.4 Transformers . 18

2.3 Text Representation . 20
2.3.1 Bag-of-words . 20
2.3.2 Word2Vec Embedding . 20
2.3.3 Global Vectors (GloVe) . 21
2.3.4 Embedding from Language Models (ELMo) 22
2.3.5 Bidirectional Encoder Representations from Transformers (BERT) . . . 22

2.4 Summary . 23

xiv

CONTENTS xv

3 Contributions 25
3.1 Interpretable Text Classification Using TM . 25

3.1.1 Bag-of-words based Text Classification 25
3.1.1.1 Basic Concept of TM for Classifying Word Senses 26
3.1.1.2 Interpretable Classification Process 27
3.1.1.3 Results . 29

3.1.2 Position Dependent Text Classification 29
3.1.2.1 Input Binarization . 31
3.1.2.2 The TM based ABSA . 33
3.1.2.3 Results . 34

3.1.3 Enhancing Interpretable Clauses and Performance of TM 36
3.1.3.1 Boosting TM BOW with Semantically Related Words 37
3.1.3.2 Input Feature Extraction from Distributed Word Representation 37
3.1.3.3 Similar Words based on Top k Nearest Words 38
3.1.3.4 Similar Words within Cosine Angle Threshold 39
3.1.3.5 Distributed Word Representation in TM 40
3.1.3.6 Results . 40

3.1.4 Robust Text Classification against Spurious Correlations 42
3.1.4.1 Learning Rule-based Clauses for Counterfactual Inference . . 44
3.1.4.2 Robustness against Counterfactual Sample 45
3.1.4.3 Results . 46

3.2 Interpretable Text Classification Using Neural Network 48
3.2.1 Position Dependent Text Classification without Positional Embedding . 49

3.2.1.1 Preprocessing . 50
3.2.1.2 Architecture description . 51
3.2.1.3 Results . 54

3.2.2 Enhancing Attention’s Explanation Using TM 57
3.2.2.1 Clause Score from TM Architecture 58
3.2.2.2 Attention-based Neural Network 59
3.2.2.3 Results . 60

3.3 Summary . 62

4 Conclusions and Future Work 65
4.1 Conclusions to the Research Questions . 65
4.2 Interpretable Text Classification Using TM . 66

4.2.1 Bag-of-Words (BOW) based Text Classification 66
4.2.2 Position Dependent Text Classification 67
4.2.3 Enhancing Performance of TM . 67
4.2.4 Robust Text Classification against Spurious Correlations 67

4.3 Interpretable Text Classification Using Neural Network 68
4.3.1 Position Dependent Text Classification without Positional Embedding . 68
4.3.2 Enhancing Attention’s Explanation Using TM 68

4.4 Future Works . 68

CONTENTS xvi

Bibliography 71

II Appended Papers 81

A Paper A 83
A.1 Introduction . 86
A.2 Related Work . 87
A.3 System Architecture for Word Sense Disambiguation 88

A.3.1 Basic Concept of Tsetlin Machine for Classifying Word Senses 88
A.3.2 Training of the Proposed Scheme . 90
A.3.3 Interpretable Classification Process 91

A.4 Evaluations . 93
A.5 Conclusions . 95

Bibliography 97

B Paper B 101
B.1 Introduction . 104
B.2 Related Work . 105
B.3 Methodology . 105

B.3.1 Input Binarization . 105
B.3.2 The Tsetlin Machine Based ABSA . 107
B.3.3 The Learning Process of TM Based ABSA 109

B.4 Experiment Results . 112
B.4.1 Datasets . 112
B.4.2 Baselines . 113
B.4.3 Results . 114

B.5 Interpretability and Analysis . 116
B.5.1 Characteristics of Clauses . 116
B.5.2 A Case Study for Interpretability . 117

B.6 Conclusions . 117

Bibliography 119

C Paper C 123
C.1 Introduction . 126
C.2 Related Work . 127

C.2.1 Sentiment Analysis . 127
C.2.2 ABSA based on LSTM . 128
C.2.3 Positional embedding based ABSA 129

C.3 Proposed Method . 129
C.3.1 Preprocessing . 130
C.3.2 Architecture description . 132

C.3.2.1 Bidirectional Gated Recurrent Unit (Bi-GRU) 132

CONTENTS xvii

C.3.2.2 Attention Layer . 134
C.4 Experiment Results and Evaluations . 134

C.4.1 Datasets . 135
C.4.2 Compared Methods . 135
C.4.3 Hardware configuration . 137
C.4.4 Performance Comparison and Analysis 137
C.4.5 Error and Sensitivity Analysis . 138

C.4.5.1 Effect of input representations 138
C.4.5.2 Effect of dropout rate . 140
C.4.5.3 Effect of Opinion Lexicon and Masked Aspect Embedding . 140

C.4.6 Two-class sentiment classification . 140
C.4.7 Case studies . 141

C.5 Conclusions . 142

Bibliography 143

D Paper D 149
D.1 Introduction . 152
D.2 Related Work . 153
D.3 Boosting TM BOW with Semantically Related Words 154

D.3.1 Input Feature Extraction from Distributed Word Representation 154
D.3.2 Similar Words based on Top k Nearest Words 154
D.3.3 Similar Words within Cosine Angle Threshold 155

D.4 Tsetlin Machine-based Classification . 155
D.4.1 Tsetlin Machine Architecture . 155
D.4.2 Distributed Word Representation in TM 157

D.5 Experiments and Results . 158
D.5.1 Datasets . 158
D.5.2 TM Parameters . 159
D.5.3 Performance When Using Top k Nearest Neighbors 159
D.5.4 Performance When Using Neighbors Within a Similarity Threshold . . 160
D.5.5 Comparison with Baselines . 160
D.5.6 Interpretation . 161

D.6 Conclusions . 162

Bibliography 165

E Paper E 169
E.1 Introduction . 172
E.2 Related Work . 173
E.3 Detailed Implementation . 174

E.3.1 Tsetlin Machine . 174
E.3.2 Learning Rule-based Clauses for Counterfactual Inference 175
E.3.3 Robustness against Counterfactual Sample 176

E.4 Experiments and Results . 178

CONTENTS xviii

E.5 A Case Study of TM vs Bi-LSTM . 181
E.6 Conclusions . 181

Bibliography 183

F Paper F 185
F.1 Introduction . 188
F.2 Related Work . 189
F.3 Proposed Architecture: TM Initialized Attention Model 190

F.3.1 Clause Score from Tsetlin Machine Architecture 190
F.3.2 Attention Based Neural Network . 192

F.4 Experiments and Results . 195
F.4.1 Performance Comparison with State-Of-The-Arts 196
F.4.2 Explainability . 198

F.5 Conclusions . 199

Bibliography 201

List of Figures

1.1 Organization of Contributions . 10

3.1 The architecture of (a) multiclass TM, (b) a TA-team forms the clause Cj
i ,

1 ≤ j ≤ q, 1 ≤ i ≤ m. 27
3.2 Structure of clauses formed by the combination of sub-patterns. Green color

indicates the literals that are included as original, red color indicates the literals
that are included as the negated form and the blue color boxes indicates that
there are no literals because not all the clauses have the same number of literals. 28

3.3 Count of first 30 literals that are in negated form for classifying the sense of
apple as company. (considered as important literals) 30

3.4 Count of last 30 literals that are in negated form for classifying the sense of apple
as company. (considered as non-important literals) 31

3.5 Representation of an aspect word and its surrounding words. 32
3.6 Replacement of sentiment-carrying words with a common sentiment token using

Opinion Lexicon. 32
3.7 3-bit input feature representing the location of common sentiment-carrying

tokens: negative, no sentiment, and positive. 33
3.8 Construction of binary input by concatenating all the pre-processed features. . . 33
3.9 TA team forms a Clause Cj

i by either including or excluding the input features. 33
3.10 (a). The sum of the votes for the clauses offers a score for a particular class. (b).

Argmax operator decides the output class based on the score of the clauses in
each class. 34

3.11 Similar words for an example “excellent film, enjoyable” using 300d GloVe
word representation. 38

3.12 Similar words for an example “very good movie” using 300d GloVe word
representation. 39

3.13 States of TAs when s is high for a particular clause. 45
3.14 States of TAs when s is low for a particular clause. 45
3.15 Clause triggered by original samples S1 and S2 on both classes when s = 2. . . 46
3.16 Clauses triggered by counterfactual samples Scf

1 and Scf
2 on both classes when

s = 2. 46
3.17 Replacement of sentiment carrying word with a common tag using Opinion

Lexicon. 50
3.18 (a) Existing approach of position embedding. (b) Proposed masking technique

to learn pattern for the position. 51

xix

LIST OF FIGURES xx

3.19 Proposed preprocessed input. 51
3.20 Proposed attention-based Bi-GRU architecture. 52
3.21 Visualization of two typical examples. The red color represents the attentive

weight of the word. A deeper color indicates a larger weight value. 57
3.22 The two-action TA and its transition in TM. 60
3.23 Visualization of attention weights with Bi-GRU only. Dark red to light red color

represents the color gradients based on the attention weights in descending order. 61
3.24 Visualization of attention weights with Bi-GRU and TM Score. Dark red to

light red color represents the color gradients based on the attention weights in
descending order. 62

A.1 The architecture of (a) multiclass Tsetlin Machine, (b) a TA-team forms the
clause Cj

i , 1 ≤ j ≤ q, 1 ≤ i ≤ m. 89
A.2 Preprocessing of text corpus for input to TM. 89
A.3 Representation of two actions of TA. 90
A.4 Eight TA with 100 states per action that learn whether to exclude or include a

specific word (or its negation) in a clause. 91
A.5 Structure of clauses formed by the combination of sub-patterns. Green color

indicates the literals that are included as original, red color indicates the literals
that are included as the negated form and the blue color boxes indicates that
there are no literals because not all the clauses has same number of literals. . . 91

A.6 Count of first 30 literals that are in negated form for classifying the sense of
apple as company. (considered as important literals) 94

A.7 Count of last 30 literals that are in negated form for classifying the sense of apple
as company. (considered as non-important literals) 94

B.1 Representation of an aspect word and its surrounding words. 106
B.2 Replacement of sentiment-carrying words with a common sentiment token using

Opinion Lexicon. 106
B.3 3-bit input feature representing the location of common sentiment-carrying

tokens: negative, no sentiment, and positive. 107
B.4 Construction of binary input by concatenating all the pre-processed features. . . 107
B.5 The two-action TA and its transition in TM. 108
B.6 TA team forms a Clause Cj

i by either including or excluding the input features. 108
B.7 (a). The sum of the votes for the clauses offers a score for a particular class. (b).

Argmax operator decides the output class based on the score of the clauses in
each class. 109

B.8 TAs with 100 states per action that learn whether to exclude or include a specific
word (or its negation), location of common token (or its negation) and the
sentiment score information (or its negation) in a clause at time step 1. 110

B.9 TAs with 100 states per action that learn whether to exclude or include a specific
word (or its negation), location of common token (or its negation) and the
sentiment score information (or its negation) in a clause at time step t. 110

B.10 The illustration of the clause update until reaching to an intended pattern at time
step t. 111

LIST OF FIGURES xxi

B.11 Interpretation of a randomly selected sample from ABSA task. 117

C.1 Replacement of sentiment carrying word with a common tag using Opinion
Lexicon. 130

C.2 (a). Existing approach of position embedding. (b). Proposed masking technique
to learn pattern for the position. 131

C.3 Proposed preprocessed input. 131
C.4 Proposed Attention based Bi-GRU architecture. 132
C.5 Confusion Matrix of restaurant 14 dataset. 138
C.6 Confusion Matrix of laptop 14 dataset. 138
C.7 Confusion Matrix of restaurant 15 dataset. 139
C.8 Confusion Matrix of restaurant 16 dataset. 139
C.9 Effect of dropout rate. 140
C.10 Visualization of two typical examples. The red color represents the attentive

weight of the word. A deeper color indicates a larger weight value. 141

D.1 Similar words for an example “excellent film, enjoyable” using 300d GloVe
word representation. 156

D.2 Similar words for an example “very good movie” using 300d GloVe word
representation. 156

D.3 A TA with two actions: “Include” and “Exclude”. 157
D.4 (a) BOW input representation without distributed word representation. (b) BOW

input using similar words based on distributed word representation. 158
D.5 Architecture of TM using modified BOW based on word similarity. 158
D.6 Clause learning semantic for multiple examples compared to simple BOW based

TM. 163

E.1 States of TAs when s is high for a particular clause. 176
E.2 States of TAs when s is low for a particular clause. 177
E.3 Clause triggered by original samples S1 and S2 on both classes when s = 2. . . 177
E.4 Clauses triggered by counterfactual samples Scf

1 and Scf
2 on both classes when

s = 2. 178
E.5 Visualization of words’ weightages of attention based model vs TM on a coun-

terfactual sample. 180

F.1 The two-action TA and its transition in TM. 190
F.2 The two-action TA and its transition in TM. 194
F.3 Visualization of attention weights with Bi-GRU only. Dark red to light red color

represents the color gradients based on the attention weights in descending order. 199
F.4 Visualization of attention weights with Bi-GRU and TM Score. Dark red to

light red color represents the color gradients based on the attention weights in
descending order. 199

List of Tables

3.1 Results on the full CoarseWSD balanced dataset for 4 different models: FastText-
Base (FTX-B), FastText-CommonCrawl (FTX-C), 1 Neural Network BERT-Base
(BRT-B) and TM. Table cells are highlighted (dark blue to light blue) for better
visualization of accuracy. 29

3.2 Experiment results of various approaches for SemEval-2014 dataset. The upper
results show the best reproducible accuracy and lower ones represent the mean
and the standard deviation of the last 50 epochs when running the model for five
times. 35

3.3 Comparison of feature extended TM with the state of the art for R8, R52 and
MR. Reported accuracy of TM is the mean of last 50 epochs of 5 independent
experiments with their standard deviation. 40

3.4 Comparison of feature extended TM with the state of the art for TREC. Reported
accuracy of TM is the mean of last 50 epochs of 5 independent experiments with
their standard deviation. 42

3.5 Accuracy of TM on Counterfactual (CF) test data using Original (Orig) training
samples and vice-versa for various values of s. 47

3.6 Experiment results of various models trained using Original and Counterfactual
training dataset on their respective opposite test data. The upper results show
the best reproducible accuracy and lower ones represent the mean and standard
deviation of the last 50 epochs when running the model for five times. 47

3.7 Details of ABSA datasets. 55
3.8 The state-of-the-art performance of ABSA on four datasets. 56

A.1 Senses associated with each word that is to be classified. 93
A.2 Results on the full CoarseWSD balanced dataset for 4 different models: FastText-

Base (FTX-B), FastText-CommonCrawl (FTX-C), 1 Neural Network BERT-Base
(BRT-B) and Tsetlin Machine (TM). Table cells are highlighted (dark blue to
light blue) for better visualization of accuracy. 95

B.1 The Type I Feedback. 111
B.2 The Type II Feedback. 112
B.3 The statistics of SemEval-2014 dataset. 114
B.4 Experiment results of various approaches for SemEval-2014 dataset. The upper

results show the best reproducible accuracy and lower ones represent the mean
and standard deviation of the last 50 epochs when running the model for five times.115

xxii

LIST OF TABLES xxiii

C.1 Details of ABSA datasets. 135
C.2 The state-of-the-art performance of ABSA on four datasets. 136
C.3 Effect of the proposed preprocessing on all four datasets. 137
C.4 Effect of various Glove vector for word representation on accuracy (%). 139
C.5 Comparison of binary classification on ABSA datasets. 141

D.1 Comparison of feature extended TM with several parameters for k. 159
D.2 Comparison of feature extended TM with several parameters for ϕ. 160
D.3 Comparison of feature extended TM with the state of the art for R8, R52 and

MR. Reported accuracy of TM is the mean of last 50 epochs of 5 independent
experiments with their standard deviation. 162

D.4 Comparison of feature extended TM with the state of the art for TREC. Reported
accuracy of TM is the mean of last 50 epochs of 5 independent experiments with
their standard deviation. 163

E.1 The Type I Feedback. 175
E.2 The Type II Feedback. 176
E.3 Accuracy of TM on Counterfactual (CF) test data using Original (Orig) training

samples and vice-versa for various values of s. 179
E.4 Experiment results of various models trained using Original and Counterfactual

training dataset on their respective opposite test data. The upper results show
the best reproducible accuracy and lower ones represent the mean and standard
deviation of the last 50 epochs when running the model for five times. 179

E.5 Results on out-of-domain balanced test data. 180

F.1 The Type I Feedback. 191
F.2 The Type II Feedback. 191
F.3 Performance of the proposed model (TM+Bi-GRU+Attn) with selected baselines. 197
F.4 Performance of TM for various evaluation metrics. 197
F.5 Performance of Bi-GRU+Attn for various evaluation metrics. 198
F.6 Performance of TM+Bi-GRU+Attn for various evaluation metrics. 198

Part I

Main Chapters

1

Chapter 1

Introduction

Machine learning (ML) has recently obtained a lot of press for its ability to properly predict
a wide range of complicated events. However, there is a growing recognition that, in addition
to predictions, machine learning models can produce knowledge about domain relationships
in data, which is referred to as “interpretations”. In the absence of a well-defined concept of
interpretability, a wide range of approaches and outputs (e.g., visualizations, natural language,
mathematical equations) have been branded as interpretation. This has caused a great deal of
misunderstanding about the concept of interpretability. It is not apparent what it means to interpret
something, what common threads exist in various ways, or how to choose an interpretation
method for a certain problem or audience. The term “interpretability” is a wide and ill-defined
term. To interpret data in its broadest sense means to extract information (in a certain form) from
it. Hence, there have been several studies looking into various parts of interpretation, which are
frequently referred to as explainable AI.

Natural language processing (NLP) is one of the most fascinating domains in the application
of ML. NLP deals with extracting the structure and meaning of the text, analyzing text, and
extracting information about people, places, and events to better understand social media senti-
ment and customer conversations. Most of the NLP models have been substantially improved
since the introduction of deep learning. As a result, the models are becoming more sophisticated,
making the reasoning behind their predictions more difficult to comprehend. To deploy deep
neural networks (DNNs) for generating high-stakes choices, interpretability must be ensured
for the public to have faith in them. For example, users are unlikely to be persuaded of the
decision made by the model with little to no explanation for the tasks such as legal document
analysis, medical diagnosis, and education domain. As a result, an NLP system’s capacity to
explain the logic is critical. Many studies have been published in recent years to handle text
categorization difficulties, but only a few have looked at the explainability of their systems. Some
researchers employ a heatmap to see how much each concealed feature affects the expected
outcomes. Although these systems are promising, they generally ignore fine-grained data that
might be useful in evaluating model behavior. In order to design a transparent model based on
ML algorithms, one has to be able to explain the operational concept of the model and build a
trustworthy platform. Recently, due to the introduction of an interpretable model called Tsetlin
Machine (TM) [1], it has opened a vast door in the area of explainable ML. Hence, to have a
trustable NLP model, we here aim to establish interpretable architectures and algorithms by
maintaining a trade-off in performance/interpretability continuum.

3

In this chapter, the motivation of this Ph.D. dissertation is discussed along with an overview
of the research questions. Furthermore, the goals and approaches are explained, and the structure
of the dissertation is also outlined.

1.1 Motivation and Research Questions

As the industry quickly embraces ML technology, the interpretation of ML models has attracted
significant interest and has become important in practice. The model interpretation clarifies
how models make decisions, which is especially important in mission-critical sectors where
the decision-making process must be transparent and accountable. Recently, the interpretation
of DNN-based models have relied heavily on attention weights. Attention-based models are
employed in explaining arbitrary BlackBox models’ predictions, by picking a set of input com-
ponents to approximate the predictions, which are typically utilized to improve interpretability
while simultaneously boosting performance. Recent research, on the other hand, suggests that
the feature selection emphasized by attention processes may not always correspond with an intu-
itively larger emphasis on final predictions. For example, a surprising portion of BERT’s attention
is focused on insignificant tokens like “[SEP]”, “,”, and “.” [2]. Furthermore, several studies have
been conducted to support or contradict the interpretability of attention processes [3, 4]. There
has been a lot of discussion over whether or not attention is an explanation.

There are several traditional methods such as Decision Trees, Random Forest, Support Vector
Machine (SVM), and Logistic Regression that are arguably considered the interpretable models.
However, most of them suffer from low accuracy. Though Logistic Regression has shown
promising performance in various NLP tasks, it is difficult for a human to interpret the prediction
made by it. One has to analyze mathematical weights to understand the model’s prediction.
In addition, bigger models based on DNN such as LSTM, CNN, and transformers are very
complex to analyze and have a BlackBox nature that prevents humans to understand them. It has
created a huge concern in the field of NLP and computer vision for explainable and interpretable
Artificial Intelligence (AI). One of the recent advancements in explainable ML is TM which is
an interpretable and transparent model that learns patterns based on propositional formula [1].
This model is less explored, but seems very promising in the field of human-level interpretation.

In this thesis, we introduce interpretable models using both TM and DNNs-based models,
enlisting the research questions and answering them. By doing so, we aim to advance the
state-of-the-art for interpretable ML models on a variety of NLP tasks.

Research Question 1: How can we design interpretable NLP models using Tsetlin
Machine?

Motivation: Word Sense Disambiguation (WSD) is one of the branches of text classification
where the sense of a particular word has to be classified. This is one of the benchmark tasks
for analyzing interpretable models, where the context is very important. Hence, we design
an interpretable model using TM and evaluate whether it captures the true context that is un-
derstandable for humans. Here we introduce a novel way of interpreting the TM architecture
using the frequency of literals included in the clause. In addition, we explore another NLP task

4

different from traditional text classification known as position-dependent text classification. We
adopt the popular evaluation framework called Aspect based Sentiment Analysis (ABSA) dataset.

Approach: To design a human-interpretable WSD model, we train TM on the WSDCoarsed
Balanced dataset for various words and extract the information of clauses. The clauses in TM
hold the information of features in their original and negated forms. We will utilize a frequency-
based feature selection technique to classify important and non-important words in clauses.
For the ABSA task, to encode position-dependent information into TM so that it does not lose
human-level interpretability, we extract novel position-dependent information by splitting the
sentence into two parts from the target word. We also encode the SentiWordNet information
represented by 3 bits to give the model extra information. This information is then fed to TM
so that the clause of TM can be employed to trace back the information of each word and its
position for easier human-level interpretation.

Research Question 2: How can TM capitalize the pretrained word representation to
enhance accuracy and interpretability of the model?

Motivation: Legacy TM adopts Boolean input features like bag-of-words (BOW) to pro-
vide human-level interpretability. The BOW representation makes it difficult to employ any
pre-trained data, such as word2vec and GloVe word representations. This limitation becomes the
bottleneck for the performance of TM in NLP when compared with DNNs.

Approach: To obtain a better performing TM model with a more general interpretation, we
extract additional features using GloVe representation based on cosine similarity. We accomplish
this by feeding TM with semantically related words extracted from pre-trained word representa-
tions. This preprocessing adds additional semantic information to the model, and the clauses
include more information than the legacy TM, which also interprets better semantically apart
from enhancing the accuracy.

Research Question 3: How can we tackle the problem of spurious correlation in text
classification?

Motivation: DNNs-based NLP models have achieved state-of-the-art performance because
of their capability to learn the non-linearity in the data. However, the main concern lies in the
ability to learn genuine correlations in the data. Due to distributional bias in the training data,
these models fail to perform better when the distribution shifts in the test data or the test data
are out-of-distribution. Since such models are BlackBox in nature, we cannot force them not to
learn spurious correlations and usually rely on counterfactual data augmentation. However, this
is an expensive and time-consuming process. To solve this problem, we employ TM to design a
text classification model that is robust to spurious correlation.

Approach: Since TM is an interpretable model whose learning is transparent and explain-
able, we have the benefit of observing how the model learns based on the features. In more
detail, we can study the functions in TM that are responsible for learning spurious correla-

5

tions and then design it not to learn those features. The hyper-parameter s, i.e., specificity, is
one of the contributors of TM that decides the probability of features taking part in classifi-
cation. Thus, we fine-tune this parameter so that it includes only genuine correlation in the model.

Research Question 4: Can we enhance the performance and explanation of ABSA task
using DNN by discarding of positional embedding?

Motivation: The interpretability of the non-traditional text classification ABSA comes at
the cost of performance in TM. These tasks heavily rely on positional embedding, which creates
ambiguity in interpreting the attention weights. To have a better performing model as well as
retaining a certain level of interpretation, we use a traditional Gated Recurrent Unit (GRU)-based
model with an attention layer and design a novel feature representation technique for an easier
and better explanation of the model.

Approach: To obtain a better-performing model with decent interpretation, we adopt two
Bi-GRU-based models with an attention layer on top for the visualization of weight for the
prediction. We then design a novel feature representation called the masking technique that
significantly improves the performance of ABSA and the visualization of attention weight. The
masking technique is based on duplicating the input sentence and masking the target (aspect)
word while keeping the original sentence as it is. Both input samples are fed to the respective
Bi-GRU, where the attention layer captures the significant information from each representation
layer.

Research Question 5: How can we integrate the information in TM and DNN together
for better performance and interpretability?

Motivation: The state-of-the-art NLP models are highly dominated by DNN-based models
such as Long-short term memory (LSTM)/GRUs and transformers. However, their BlackBox
nature makes the interpretation ambiguous. On the other hand, TM offers an easy logic-based
interpretation of the model, but it comes with a significant loss in performance. The trade-off
between accuracy and interpretability is one of the main concerns of modern NLP. There has
been an immense attempt at extracting a logical explanation from the attention layer of DNN.
However, the change in attention weights based on various scenarios makes it arguably tough
to establish a trustworthy model. Hence to mitigate the limitation of both models, we utilize
the interpretable information from TM and integrate it into DNN so that model has prerequisite
information on the distribution of the task, generating sensible attention weights.

Approach: In order to integrate both models, we first train a TM on a particular dataset and
obtain the distribution of the task based on the clause score of each word. It is then used as the
prerequisite information in DNN’s initial layer. This helps to pre-weight the input layer so that
the attention layer can easily concentrate on intended input rationales, thereby assigning more
weight to important words. We then extract these weights for a better understanding of the model.

Limitations: In this thesis, the main aim is to develop interpretable algorithms using TM and

6

DNN without significantly sacrificing performance. We tried to fill the gap between performance
and interpretability by a significant margin so that it helps in downstream applications of NLP.
The main focus of this thesis lies in addressing the issue of the interpretation of the model for text
classification rather than more sophisticated tasks such as question answering, summarization,
and information retrieval. The methods proposed in the thesis have not been tested in the real
world, and thus we do not claim to have applied them already to the real-world examples.

Overall, the whole system is disjointed and versatile and we believe that it can be easily
adapted for real-world interpretable text classification. Furthermore, information exchange
between distinct (disjoint) modules is simple and may be developed as required. Hence, we
propose and employ novel interpretable architectures and algorithms for NLP that bridge the gap
between accuracy and interpretability to set a new paradigm of NLP methods.

1.2 Publications

We solve each task of the thesis using TM and DNNs. We employ various areas of ML to solve
the problems of interpretability in sentiment analysis, text classification, and their robustness.
We list the contributions of this thesis below, each of which is described in detail in Chapter III,
and the associated papers published are presented in Part II of the thesis. Here, we present a
summary of our papers:

Paper A We understand that DNN-based NLP models do not provide a faithful explanation of
the model due to its BlackBox nature. A weakness of the state-of-the-art supervised
models, however, is that it can be difficult to interpret them, making it harder to check
if they capture senses accurately or not. In this paper, we introduce a novel TM-based
supervised model that distinguishes word senses by means of conjunctive clauses. The
clauses are formulated based on contextual cues, represented in propositional logic. Our
experiments on CoarseWSD-balanced dataset indicate that the learned word senses can be
relatively effortlessly interpreted by analyzing the converged model of the TM. Addition-
ally, the classification accuracy is higher than that of FastText-Base and similar to that of
FastTextCommonCrawl. This paper addresses Research Question 1.

Paper B In this paper, we propose a human-interpretable learning approach for ABSA task, em-
ploying the recently introduced TMs. We attain interpretability by converting the intricate
position-dependent textual semantics into binary form, mapping all the features into BOWs.
The binary-form BOWs are encoded so that the information on the aspect and context
words are retained for sentiment classification. We further adopt the BOWs as input to
the TM, enabling learning of aspect-based sentiment patterns in propositional logic. To
evaluate interpretability and accuracy, we conducted experiments on two widely used
ABSA datasets from SemEval 2014: Restaurant 14 and Laptop 14. The experiments
show how each relevant feature takes part in conjunctive clauses that contain the context
information for the corresponding aspect word, demonstrating human-level interpretability.
At the same time, the obtained accuracy is on par with existing DNN models, reaching
78.02% on Restaurant 14 and 73.51% on Laptop 14. This paper addresses Research
Question 1.

7

Paper C We observed that several existing articles demonstrated promising ABSA accuracy using
positional embedding to show the relationship between an aspect word and its context.
In most cases, the positional embedding depends on the distance between the aspect
word and the remaining words in the context, known as the position index sequence.
However, these techniques usually employ both complex preprocessing approaches with
additional trainable positional embedding and complex architectures to obtain state-of-the-
art performance. In this paper, we simplify preprocessing by including polarity lexicon
replacement and masking techniques that carry the information of the aspect word’s
position and eliminate the positional embedding. We then adopt a novel and concise
architecture using two bidirectional GRU along with an attention layer to classify the aspect
based on its context words. Experiment results show that the simplified preprocessing
and the concise architecture significantly improve the accuracy of the publicly available
ABSA datasets, obtaining 81.37%, 75.39%, 80.88%, and 89.30% in restaurant 14, laptop
14, restaurant 15, and restaurant 16 respectively. This paper addresses Research Question
4.

Paper D TM is an interpretable pattern recognition algorithm based on propositional logic that has
demonstrated competitive performance in many NLP tasks, including sentiment analysis,
text classification, and word sense disambiguation. To obtain human-level interpretability,
legacy TM employs Boolean input features such as BOW. However, the BOW representa-
tion makes it difficult to use any pre-trained information, for instance, word2vec and GloVe
word representations. This restriction has constrained the performance of TM compared
with DNNs in NLP. To reduce the performance gap, in this paper, we propose a novel way
of using pre-trained word representations for TM. The approach significantly enhances the
performance and interpretability of TM. We achieve this by extracting semantically related
words from pre-trained word representations as input features to the TM. Our experiments
show that the accuracy of the proposed approach is significantly higher than the previous
BOW-based TM, reaching the level of DNN-based models. This paper addresses Research
Question 2.

Paper E We observed that distribution biases in the training and testing data greatly impact the
performance of the models when exposed to out-of-distribution and counterfactual data.
The root cause seems to be that many machine learning models are prone to learning
shortcuts, modeling simple correlations rather than more fundamental and general rela-
tionships. As a result, such text classifiers tend to perform poorly when a human makes
minor modifications to the data, which raises questions regarding their robustness. In this
paper, we employ a rule-based architecture called TM that learns both simple and complex
correlations by ANDing features and their negations. As such, it generates explainable
AND-rules using negated and non-negated reasoning. Here, we explore how non-negated
reasoning can be more prone to distribution biases than negated reasoning. We further
leverage this finding by adapting the TM architecture to mainly perform negated reasoning
using the specificity hyper-parameter s. As a result, the AND-rules become robust to
spurious correlations and can also correctly predict counterfactual data. Our empirical in-
vestigation of the model’s robustness uses the specificity s to control the degree of negated
reasoning. Experiments on publicly available Counterfactually-Augmented Data demon-

8

strate that the negated clauses are robust to spurious correlations and outperform Naive
Bayes, SVM, and Bi-LSTM by up to 20%, and ELMo by almost 6% on counterfactual test
data. This paper addresses Research Question 3.

Paper F Attention mechanism has been a popular choice for such explainability recently by es-
timating the relative importance of input units. We noticed that such processes tend
to misidentify irrelevant input units when explaining them. This is due to the fact that
language representation layers are initialized by pre-trained word embedding that is not
context-dependent. Such a lack of context-dependent knowledge in the initial layer makes
it difficult for the model to concentrate on the important aspects of input. Usually, this
does not impact the performance of the model, but its explainability differs from human
understanding. Hence, in this paper, we propose an ensemble method to use logic-based
information from the TM to embed it into the initial representation layer in the DNN to
enhance the model in terms of explainability. We obtain the global clause score for each
word in the vocabulary and feed it into the DNN layer as context-dependent information.
Our experiments show that the ensemble method enhances the explainability of the atten-
tion layer without sacrificing any performance of the model and even outperforming it for
certain datasets. This paper addresses Research Question 5.

Each of the articles listed above tries to solve a task in NLP in an interpretable way. A pictorial
representation of the flow of the content of our contributions in accordance with the aim of this
thesis is shown in Figure 1.1. Our papers address the problems in the two phases of interpretable
algorithms using TM, which together give an overview of interpretable text classification,
enhancing performance, and robustness against counterfactual samples. As can be seen from
Figure 1.1, the modules in each phase are interconnected to each other, but also act as disjoint
modules to provide separate information to the interpretable NLP. The first four boxes show the
type of task in NLP using TM and the circles denote the models associated with each task. There
are two models: TM and DNNs. Eventually, both are integrated for better interpretability of the
NLP model.

1.3 Thesis Outline

The dissertation is organized into two parts. Part I contains an overview of the work carried out
throughout this Ph.D. study and Part II includes a collection of six published or accepted papers,
which are mentioned in the list of publications. In addition to the introduction chapter presented
above, the following chapters are included.

• Chapter II presents the background and preliminary information of various techniques and
methods used in this thesis such as Explainable ML, TM, and DNNs.

• Chapter III explains the contributions of this thesis in detail. It is divided into two sections
that present the two stages of the interpretable NLP model. Each section describes our
contributions to both stages, i.e., Interpretable Text Classification using TM, and Inter-
pretable Text Classification using DNNs. The motivation, intuition, novelty, methodology,
and results for each contribution are explained extensively.

9

Text Classification

Position Dependent
Text Classification

GLoVe-Based TM

Robustness

Position Dependent
Text Classification

Ensemble
Interpretable

Model

Tsetlin Machine

Neural Network

RQ1

RQ2

RQ3

RQ4

RQ5

Figure 1.1: Organization of Contributions

• Chapter IV concludes the thesis and discusses the implications of the outcomes of the
thesis. It also contains potential future research directions that can further improve the
work presented in the thesis. This chapter also concludes Part I of the thesis.

• In Part II of the thesis, all publications associated with the thesis are presented entirety.
There are six publications labeled as Paper A to F. The papers are listed in chronological
order with the flow of the thesis and in order of published timeline.

10

Chapter 2

Background

In this chapter, we briefly describe the background and preliminary information needed to
understand the thesis. Specifically, we explain concepts that have been used throughout this
thesis. First, machine learning has been briefly introduced. Next, we move on to the TMs that
have been extensively employed in this thesis and are a recurring theme in the papers associated
with this thesis. Neural network has been an established model for NLP and has has also been
explained here in this chapter. In addition, we present various NLP models that rely on neural
networks such as RNN, LSTM, Attention, and Transformers.

2.1 Interpretable Machine Learning

The term “interpretability” is broad, and there are numerous definitions in the literature, some of
which are borrowed from mathematical logic [5]. We could partially define it as a “relationship”
between formal theories that expresses the potential of interpreting or translating one into the
other. This concept clearly extends interpretability to various ML applications. Based on Cain’s
definition [6], mathematical models are not perfect, but mathematical representations of natural
phenomena are highly reliable. The interpretability of model is a fundamental aspect of assessing
how decisions are made as well as assessing the subsequent predictions of models. Although a
machine learning model may make predictions with great precision and accuracy, what matters
most to a decision-maker is how the choice was made, and therefore how the prediction was
made or how a specific instance was categorized by the algorithm. Doshi-Velez et. al [7] answers
this question by stating that “accuracy being an important metric is still an incomplete description
of the model in most of the real-life tasks”. There are certainly occasions in which it is vital to
explain why one choice is superior to another, for instance, ML applications in the legal and
medical domains.

Based on Tjoa and Guana [8], there are various types of interpretability:

1. Perceptual interpretability: This category considers human perception as interpretation.
One of the subcategories is Saliency. Saliency is the method that assigns a mathematical
value to the input components that reflects their importance and their contribution to the
decision. Another subcategory includes the signal method, which examines the stimulation
of the neurons or a set of neurons. Such activated values of neurons are one way to
transform them into interpretable form. Verbal interpretability, on the other hand, is

11

another form of perceptual interpretability where it is assumed that some verbal structures
are easily understandable to humans. The right concatenation of predicates and connectives
can result in logical statements.

2. Interpretability through mathematical structures: The premise behind the study
of predefined complex systems is that a parametric mathematical model can aid the
explanation of the phenomena. For example, in a linear regression model, if the basic
hypotheses are respected and the Ordinary Least Square estimates are consistent, the
interpretation of the parameters is certainly clearer, and the model can be improved by
adding more complex components. The idea of trade-off is the foundation of the reasoning
that leads to the model’s explainability in increasingly complicated models such as neural
networks. In addition, Feature extraction is one of the most well-known techniques in
the literature. It is a correlations-and-associations-based approach that allows one to
distinguish which features are less important than others or to find internal patterns that
can help explain and translate the models’ complex components. Sensitivity is another
basis of interpretation based on gradient analysis, perturbation, and localization. They are
thus considered infinitesimal neighborhoods of successive points by analyzing how the
function changes in a neighborhood, which is the concept behind the gradient analysis.

The interpretable model can be classified into two categories: Transparent Model and Post-
Hoc Interpretability. Transparent ML models are transparent and do not need additional analysis
to extract the explanation of the model. However, post-hoc interpretable models are neural
networks that require extensive post-processing to obtain the desired interpretability. Here we
have carefully selected the relatable, interpretable models that closely align with the field of
NLP. The selection is also based on the comparison we have made with our proposed tasks in the
thesis.

2.1.1 Linear Regression

Linear Regression model predicts the dependent variable based on the weighted sum of the
independent variables also known as covariates [9]. The relationship’s linearity makes it very
easy to comprehend. These models are used to model a y (target) variable’s dependency on
certain x variables [10]. The data are supposed to be impacted by noise (of the Gaussian kind,
with a mean µ and variance of σ), and the relationship may be described as follows:

y = β0 + β1x1 + · · · βpxp + ϵ, (2.1)

where ϵ is the error that is the difference between actual and predicted value and β is the weight
coefficient. These errors are considered to have a Gaussian distribution, which implies that errors
exist in both the positive and negative directions, with many little errors and a few large ones.
The well-known “ordinary least squares technique” (OLS) is one of the most commonly used
approaches for estimating model parameters [11]. It is utilized to discover the weights βj that
minimize the squared differences between the actual and predicted results:

β̂ = arg min
β0,··· ,βp

n∑
i=1

(
yi −

(
β0 +

p∑
j=1

βjx
i
j

))2

. (2.2)

12

In the medical field, for example, one of the important features is to quantify the impact of
a medicine or therapy while also taking into consideration sex, age, and other factors in an
interpretable manner [12]. Linear effects are simple to explain [13]. The assumption of normality
ensures that the estimates are consistent and that the estimators have optimal qualities. If the as-
sumptions are not met, the estimates will be warped and the findings will be invalidated. Another
important properties are constant variance (homoschedasticity) and absence of multicollinearity.
The type of the corresponding feature determines how a weight in a linear regression model is
interpreted.

The feature importance can be obtained in following ways:

• Interpretation of a Numerical Feature: When all other feature values stay constant,
increasing feature xk by one unit improves the prediction for y by βk units.

• Interpretation of a Categorical Feature: When all other characteristics stay constant,
switching feature xk from the reference to the other category increases the prediction for y
by βk.

• Feature Importance: The absolute value of a feature’s t-statistic can be used to determine
its relevance in a linear regression model. The predicted weight is scaled with its standard
error in the t-statistic,

tβ̂j
=

β̂j

SE(β̂j)
. (2.3)

With increased weight, the significance of a characteristic grows. The less essential the
feature is, the greater the variation it has in its projected weight. SE is the standard error
of the regression.

2.1.2 Decision Tress

The linear regression model fails in some circumstances where the relationship between results
and individual features are nonlinear or where features interact with each other. Hence there is
a necessity for tree-based model [14]. Tree-based models partition the data many times based
on specified feature cutoff values. Different subsets of the dataset are formed as a result of
the splitting, with each instance belonging to one of them. Terminal or leaf nodes are the final
subsets, whereas internal nodes or split nodes are the intermediate subsets. The average outcome
of the training data in this node is used to predict the outcome in each leaf node. Classification
and regression may both be done with trees. A tree may be grown using a variety of algorithms.
They differ in terms of the tree’s potential structure (e.g., the number of splits per node), the
criteria for locating splits, when to cease splitting, and how to estimate basic models within leaf
nodes [15]. The relationship between the outcome y and the attributes x is described by the
formula below,

ŷ = f̂(x) =
M∑

m=1

cmIx∈Rm . (2.4)

Each of the instances falls into exactly one leaf node (=subset Rm). Ix∈Rm is known as
identity function that returns 1 if in the subset Rm and 0 otherwise. The model takes a feature
and calculates the cut-off point that minimizes the variance of y for a regression task. The

13

variance indicates how far a node’s y values are distributed around its mean value. In addition, a
Gini index cm tells how impure the node is. When the data points in the nodes have relatively
comparable y values, the variance and Gini index are reduced. As a result, the ideal cut-off point
separates the two subgroups as much as possible in terms of the preferred outcome. The program
aims to construct subsets for category features by experimenting with alternative groupings of
categories. After determining the appropriate cutoff for each feature, the algorithm chooses the
feature for splitting that would result in the best partition in terms of variance or Gini index, and
then adds it to the tree. The algorithm repeats the search-and-split process in both new nodes
until it reaches a stop condition.

The interpretation is straightforward: we start from the root node to the next node, and the
edges indicate the subsets we are looking for. When we arrive at the leaf node, the node informs
us of the expected result. ANDing all the possible edges gives us an explanation [16].

Feature importance: In a decision tree, the overall relevance of a feature can be calculated
by observing all the splits that the feature used and evaluating its impact on variance and the
Gini index compared to the parent node. The overall importance of all factors is multiplied by
100. This means that each value can be regarded as a percentage of the overall model value.

Tree decomposition Decomposing the decision path into one component per feature can
explain individual predictions of a decision tree [17]. We can follow a choice through the tree
and use the contributions added at each decision node to explain a prediction. The initial point in
a decision tree is the root node. If root nodes were employed to make predictions, the mean of
the training data’s outcome would be predicted. To obtain the final prediction, we must trace the
route of the data instance that we wish to explain and continue to contribute to the formula. A
prediction of an instance is the mean of the target outcome plus the sum of all splits between
the node at the root and the node at the terminal. The tree structure is ideal for capturing data
interactions between features. The data is organized into distinct groups, which are frequently
easier to understand than points on a multidimensional hyperplane, as in linear regression. The
interpretation is arguably very simple.

2.1.3 Naive Bayes Classifier

Naive Bayes classifiers rely on the Bayes’ theorem of conditional probabilities. Based on the
value of each feature, it calculates the probability for a particular class. Naive Bayes classifiers
calculate class probabilities independently for each feature, which is equivalent to the assumption
that the features are independent of each other [18]. Naive Bayes is a conditional probability
model that predicts the likelihood of a class Ck given an input x as follows:

P (Ck|x) =
1

Z
P (Ck)

n∏
i=1

P (xi|Ck). (2.5)

The term Z refers to a scaling parameter that ensures the sum of probabilities for all classes
equals one (otherwise they would not be probabilities). A class’s conditional probability is the
class probability multiplied by the probability of each feature within the class, normalized by Z.
xi is the ith input, where i = 1, 2, · · ·n. This formula is derived according to Bayes’ theorem.

Because of the independence assumption, Naive Bayes is a model that can be interpreted. It
can be interpreted on a modular level. Because we can interpret the conditional probability, it is

14

very clear how much each feature contributes to a specific class prediction [19].

2.1.4 Tsetlin Machine

TM is a recent ML model that has gained significant interest because of its human-understandable
pattern recognition by composing patterns in propositional logic. It has surpassed many cutting-
edge pattern recognition approaches in benchmarks involving pattern discrimination, image
recognition, text classification, tabular data, and optimal move prediction for board games
without sacrificing the crucial virtue of interpretability [1, 20, 20, 21, 22]. A revolutionary game
theoretic system that manages decentralized teams of Tsetlin Automata (TA) is at the core of the
TM. The orchestration directs the TA to cooperatively learn arbitrary complicated propositional
formulations in conjunctive normal form, capturing the various aspects of the patterns seen.
These equations have proven to be particularly well adapted for human interpretation while
still allowing for the formation of complicated nonlinear patterns. The TM represents inputs,
patterns, and outputs as bit sequences and is very straightforward to understand. Decentralized
manipulation of those bits is then required for pattern recognition. This gives the TM a computing
edge over approaches that rely on more intricate mathematical models.

The main important aspect of TM is that it learns both linear and nonlinear relationships in
the data without losing the interpretability of the model. TM uses propositional logic to learn
correlations between features and labels. A propositional logic formula in TM, namely a clause,
is a conjunction of negated and non-negated forms of the input features. Such negated and
non-negated (original) features are called literals and are controlled by TA.

The clause, which represents a specific sub-pattern among a specific set of patterns, is the
most important component of TM. This sub-pattern is in propositional AND-form, which makes it
highly interpretable and amendable for logical task understanding. To have a clear comprehension
of what a clause looks like, let us consider a bag-of-words input X = [x1, · · · , xn], xk ∈ {0, 1},
k ∈ {1, . . . , n}, where xk = 1 means the presence of a word in the sentence and n is the size of
the vocabulary. Let us assume there are γ classes in total. If each class needs α clauses to learn
the pattern, altogether the model is represented by γ × α clauses Cκ

ι , 1 ≤ κ ≤ γ, 1 ≤ ι ≤ α, as:

Cκ
ι =

∧
k∈Iκι

xk

 ∧

∧
k∈Īκι

¬xk

 , (2.6)

where Iκι and Īκι are non-overlapping subsets of the input variable indices, I ικ, Ī ικ ⊆ {1, · · · , n}, I ικ∩
Ī ικ = ∅. Iκι represents the set of indices of the features that the TAs include in original form,
while the set Īκι contains the indices of the features that the TAs include in negated form.

Here, clauses with odd indexes in each class are allocated positive polarity (+), whereas those
with even indexes are assigned negative polarity (-). Positive polarity clauses vote in favor of
the target class, while negative polarity clauses vote against it. As demonstrated in Eq. (2.7), a
summation operator aggregates them by subtracting the total number of negative votes from the
total number of positive votes,

fκ(X) = Σα−1
ι=1,3,...C

κ
ι (X)− Σα

ι=2,4,...C
κ
ι (X). (2.7)

For γ classes, the final output ŷ is given by the argmax operator to classify the input based

15

on the highest net sum of votes, as shown in Eq. (2.8).

ŷ = argmaxκ (f
κ(X)) . (2.8)

In a nutshell, each input feature corresponds to two TAs, TA and TA’. TA controls the literal’s
original (non-negated) form, whereas TA’ controls its negation [22]. Each TA has two actions
(Include/Exclude) with 2N states and decides whether to include or exclude the literal. When
a TA transits from state 1 to state N , the action “Exclude” is executed. When a TA transits
from state N + 1 to state 2N , it executes the “Include” action. Feedback in the form of Reward,
Penalty, or Inaction is adopted to trigger each TA move. The TA or TA’ that received reward
will move away from the center while those that received penalty will move towards the center.
In this way, the TA (or TA’) can be trained to either “include” or “exclude” a word (or its
negation), helping the clauses, which are composed by the literals, learn different subpatterns.
Consequently, the TM, composed by clauses, will gradually converge to the intended pattern.
The feedback (reward or penalty) given to the TM follows two types: Type I and Type II feedback.
Based on these feedback types, rewards or penalties are fed to the TA for the training samples.
Type I Feedback is activated when a given input feature is either correctly assigned to the target
sentiment (true positive) or mistakenly ignored (false negative). This feedback provides two
countering effects: (1) involving more literals from the sample to refine the clauses; (2) trimming
of the clauses by a factor specificity s that makes all clauses eventually evaluate to 1. The
s-parameter is also responsible for avoiding overfitting. Type II Feedback is activated when
an input feature is wrongly assigned to the target sentiment (false positive). It is responsible
for introducing literals that make the clause evaluate to false, every time a false positive occurs.
Type I Feedback and Type II Feedback are summarized in Tables B.1 and B.2 respectively.

2.2 Deep Learning

Deep learning has a long and illustrious history, as well as numerous goals. Several recommended
solutions have yet to bear fruit in full. For supervised learning, modern deep learning provides a
robust foundation. A deep network can express functions of increasing complexity by adding
more layers and units within each layer [23]. Given sufficiently large models and huge datasets of
labeled training examples, deep learning can accomplish the task that consists of mapping an input
vector to an output vector. The fundamental deep learning models are deep feedforward networks,
commonly known as feedforward neural networks or multi-layer perceptrons (MLPs). These
models are known as feedforward because of their flow of information through a computation
being evaluated from input to yield output. For machine learning practitioners, feedforward
networks are extremely important. Many important business applications are built upon them.
Because feedforward neural networks are often depicted by combining several different functions,
they are referred to as networks. The model is linked to a directed acyclic graph that shows
how the functions are connected. Some of the sophisticated deep learning models are Recurrent
Neural networks (RNN), Convolutional Neural Networks (CNN), and Transformers.

16

2.2.1 Deep Neural Networks

In recent years, neural networks have emerged as the preferred tool for NLP [24]. This subsection
will provide an overview of the basic building blocks used in neural networks. Neural networks
can be thought of as compositions of functions [25]. Indeed, the basic machine learning models
described so far, e.g., linear regression, and logistic regression, can be viewed as simple instances
of a neural network.

Let us consider a multiclass logistic regression given by:

f(x) = Wx+ b,

g(y) = softmax(y),

where W ∈ RC×d, x ∈ Rd, b ∈ RC , y ∈ RC , and C is the total number of classes and d

represents the dimension of the input. From here onward, we will use W to represent a matrix of
the weights, b is the set of parameters of the model. Logistic regression here can be observed as
the functions f and g: g(f(x)) where f(·) is referred to as affine function and g(·) is represented
as activation function which is softmax function in this case.

In recent years, neural networks have emerged as the preferred tool for NLP. This subsection
will provide an overview of the basic building blocks used in neural networks. Neural networks
can be thought of as compositions of functions. Indeed, the basic machine learning models
described so far, e.g., linear regression, and logistic regression can be viewed as simple instances
of a neural network.

h = σ1(W1x+ b1),

y = softmax(W2h+ b2),

where σ1 is the first hidden layer’s activation function. It’s worth noting that each layer has its
weight matrix W and bias vector b. Layers mostly have distinct parameters, but tying or sharing
of such parameters allows different layers to set their parameters to be the same. Such sharing of
parameters is an important aspect because it induces inductive bias that often helps model with
generalization. Forward propagation is the process of computing the output of one layer, such
as h, which is then fed as input to subsequent layers, and eventually produces the output of the
entire network, y. Because a collection of linear functions can be expressed as another linear
function, deep neural networks’ expressiveness stems primarily from their non-linear activation
functions.

Activation functions: Most commonly used activation functions include sigmoid, softmax
and rectified linear unit (ReLU) [26]. Another activation function known as hyperbolic tangent
or tanh function is less commonly used function that outputs the values in the range of (−1, 1):

σ(x) =
expx− exp−x

expx+exp−x
. (2.9)

2.2.2 Recurrent Neural Network

NLP usually adopts models that can process a sequence of inputs because the text is sequential.
The RNN is one of the most basic neural networks for sequential input [27]. An RNN is a feed-
forward neural network that has a dynamic number of hidden layers with the same parameters.

17

As it unrolls through time, the model becomes “wide” rather than “deep.” However, unlike a
traditional feed-forward neural network, it accepts a new input at each “layer” or time step. The
RNN, in particular, keeps a hidden state ht, which represents its “memory” of the sequence at
each time step t. At a given time step, RNN performs the following operations:

ht = σh(Whxt + Uhht−1 + bh),

yt = σy(Wyht + by),

where σh and σy are the activation functions. The RNN modifies the previous hidden state ht−1

by applying a transformation Uh and a transformation Wh to the current input xt, resulting in the
new hidden state ht. The RNN also produces an output yt at each time step. In practice, learning
over a large number of time steps is difficult for the RNN.

2.2.3 Long-Short Term Memory (LSTM)

When dealing with sequential data, long-short term memory networks are preferred over RNNs
because they can retain information for longer time spans, which is necessary for modeling
long-term dependencies found in natural language [28]. The LSTM can be considered as a more
advanced RNN cell with mechanisms for deciding what should be “remembered” and what
should be “forgotten.” The LSTM adds a forget gate ft, an input gate it, and an output gate ot
to the RNN, all of which are functions of the current input xt and the previous hidden state ht.
These gates allow the model to selectively retain or overwrite information by interacting with the
previous cell state ct−1, the current input, and the current cell state ct. The overall operation of
the model is given by:

ft = σg(Wfxt + Ufht−1 + bf),

it = σg(Wixt + Uiht−1 + bi),

ot = σg(Woxt + Uoht−1 + bo),

ct = ft ◦ ct−1 + it ◦ σc(Wcxt + Ucht−1 + bc),

ht = ot ◦ σh(ct).

Here σg is the activation function of type sigmoid, σc and σh are the tanh activation function, and
◦ represents element-wise multiplication which is also known as Hadamard product. Multiple
layers of LSTM cells can be stacked. In [29], it is introduced a bidirectional LSTM that runs
separate LSTMs forward and backward over the sequence in most NLP tasks. The concatenation
of the hidden states from the forward and backward LSTMs at time step t is the hidden state ht

and is given by

ht = [hfwd;hbwd]. (2.10)

2.2.4 Transformers

The Transformer [30] is a sequence-to-sequence model that is made up of an encoder and a
decoder, each of which is made up of a stack of L identical blocks. A multi-head self-attention
module and a position-wise feed-forward network (FFN) are the most important components

18

of each encoder block. A residual connection [31] is applied in each module to build a deeper
model, followed by the Layer Normalization [32] module. Decoder blocks, in contrast to encoder
blocks, also add the cross-attention modules between multi-head self-attention modules and
position-wise FFNs. In addition, the decoder’s self-attention modules have been tweaked to
prevent each position from paying attention to subsequent positions.

Attention Modules

Transformer is based on attention mechanism with Query-Key-Value (QKV) model. If the the
query matrix representation is given by Q ∈ RN×Dk , keys matrix is K ∈ RM×Dk and value
matrix is V ∈ RM×Dv , then the scaled dot-product attention is given by:

Attention(Q,K, V) = softmax

(
QKT

√
Dk

)
V = AV, (2.11)

where N and M represents the lengths of queries and the keys (or values) respectively. Dk and Dv

represent the dimensions of keys (or queries) and values respectively, and A = softmax(QKT
√
Dk

)

is called attention matrix where softmax is applied in row-wise manner. To avoid the softmax
function’s gradient vanishing problem, the dot-products of queries and keys are divided by

√
Dk.

Transformer employs multi-head attention instead of a single attention function, in which the
Dm-dimensional original queries, keys, and values are projected into Dk, Dk, and Dv dimensions,
respectively, using H different sets of learned projections. The keys and values, as well as the
output, are computed with attention for each of the projected queries. The model then joins all of
the outputs together and projects them back to a Dm-dimensional representation, shown below.

MultiHeadAttn(Q,K, V) = Concat(head1, · · · , headH)W 0,

where headi = Attention(QWQ
i , KWK

i , V W V
i).

Position-wise FFN

The position-wise feed forward network is a fully connected module that operates individually
and identically on each position.

FFN(H ′) = ReLU(H ′W1 + b1)W 2 + b2, (2.12)

where H ′ is the output of the previous layer, and W 1 ∈ RDm×Df , W 2 ∈ RDf×Dm , b1 ∈ RDf ,
b2 ∈ RDm are the trainable parameters. Usually, the intermediate dimension Df of FFN is set to
be larger than Dm.

Residual Connection and Normalization

Transformer employs a residual connection around each module, followed by Layer Normal-
ization, to generate a deep model. A transformer encoder block, for example, can be written
as:

H ′ = LayerNorm(SelfAttention(X) +X),

H = LayerNorm(FFN(H ′) +H ′),

19

where SelfAttention(·) stands for the self-attention module and LayerNorm(·) stands for the layer
normalization operation.

Position Encodings

Transformer is unaware of positional information because it does not use recurrence or convolu-
tion (especially for the encoder). As a result, additional positional representation is required to
reflect token ordering.

2.3 Text Representation

NLP is a technique for teaching computers to understand human language. In NLP domain,
representation of text is one of the most important aspect which generally map a text to linguistic
structures that encode its meaning [33]. There are various ways of representing the words or
sentence/context in the NLP models. One of the simple ways to represent words is to utilize
Bag-of-words (BOWs). Many sophisticated representations are known as word embedding or
sentence/context embedding. These are trained mathematical weights that represent each word
or sentence/context that holds the semantics and syntactic relationships with other words or
sentence/context. Here we explain these techniques in detail.

2.3.1 Bag-of-words

It is one kind of text representation usually denoted by xi ∈ R|V |, where V is the vocabulary used
for the particular task [34]. The number of occurrences of the ith word in the vocabulary in the
text corresponds to each entry xi. This is also known as Boolean BOWs which is the base for text
representation in this thesis. This frequency can be weighted using the term frequency-inverse
document frequency (tf-idf) metric, which also indicates the importance of a phrase in a corpus
of texts. In a text, an n-gram is a continuous series of n words. Only unigrams, or one-word
sequences, are considered in the typical BOW model. Grammar and word order are ignored in
the BOWs. A sequence of words w1, · · · , wT is usually encoded as a sequence of the matching
word embeddings x1, · · · , xT in order to capture compositionality and dependencies in the input.

2.3.2 Word2Vec Embedding

Word2Vec is a free and open-source word embedding prediction model that is trained using
neural network [35]. This model creates a vector of each word using two hidden layers in a
shallow neural network. Continuous BOWs (CBOWs) and Skip-gram models of word2vec
capture word vectors that are expected to contain semantic and syntactic information. It is recom-
mended that the corpus be trained using a large corpus in order to have a better representation of
words. Word2Vec has been useful in a variety of NLP tasks [36]. Word2Vec was created to make
embedding training more important, and it has subsequently become a standard for developing
pre-trained word representations. Depending on the context, word2Vec predicts using one of two
neural network models: CBOW or Skip-gram. In both models, the corpus and a predetermined
length of a window are shifted together, and the training is done with words inside the window

20

in each step [37]. This feature presentation algorithm provides a powerful tool for unraveling
corpus relationships and token similarity. For example, in the vector space, this technique would
consider two words like “small” and “smaller” to be close to each other.

Continuous Bag of words: CBOWs predict words in current work based on context. The
nearby words in the window communicate with CBOWs. The CBOWs technique employs three
levels. The first layer is context, while the hidden layer corresponds to the estimation of each
word from the input to the weight matrix, which is then estimated for the third layer, which is
output. The final step in this strategy is to use backpropagation of the error gradient to correlate
the output and the task itself in order to improve the representation. In the CBOWs approach,
the middle word is predicted based on its context, whereas in the skip-gram method, the context
word is predicted based on the center word [38].

Skip-Gram: Skip-Gram is the inverse of the CBOW model in which it predicts based on the
central word after context training. The targeted word is associated with the input layer, and the
context is associated with the output layer. In contrast to CBOWs, this approach seeks to estimate
the context given the word. The correlation between output and every word of the context is the
final phase of this model, which is used to adjust representation using backpropagation [38, 39].
When there is little training data and not frequently occurring words, skip-gram is effective.
CBOWs, on the other hand, is faster and perform better with repeated words. Two techniques
are proposed to handle the issue of learning the final vectors. The first is negative sampling,
which limits the number of output vectors that need to be updated so that only a sample of them
is updated based on a noise distribution (a probabilistic distribution used in the sample step).
Furthermore, hierarchical softmax, which is based on the Huffman tree, is another option. It’s a
binary tree that displays all words in the order of their counts. Then each step from the root to the
target is normalized. When the dimension of the vectors is low, negative sampling is effective,
and it works well with repeated words. In contrast, hierarchical softmax works nicely with fewer
words occurrence.

2.3.3 Global Vectors (GloVe)

Word embedding using Word2vec training will better capture word semantics and adjust word
connections. Word2vec, on the other hand, focuses mostly on local context window knowledge,
while global statistical data is underutilized. So the GloVe is introduced [40], which is a well-
known technique based on the global co-occurrence matrix. In GloVe, each element Xij shows
the frequency with which the words wi and wj co-occur in a certain context window and is
frequently used for text classification. GloVe is a word2Vec expansion for effectively learning
word vectors, where the words prediction is based on the surrounding words. Glove is based on
how many times a word appears in the corpus, which is done in two steps. The initial step is to
create a co-occurrence matrix from the corpus, which is then factorized to obtain vectors. Word
representation algorithms, such as Word2vec and GloVe, are simple, accurate, and they can learn
semantic representations of words from vast data sets. However, they do not learn embedded
words from terms that are out of their vocabulary, such as words that do not appear in the present
training corpus or terms that do not appear in the current vocabulary. To solve this issue, a new

21

models is proposed known as FastText [41]. However, fasttext is not associated with this thesis.

2.3.4 Embedding from Language Models (ELMo)

ELMo [42] provides deep contextual word representations. Researchers agree that two issues
should be considered in an appropriate word representation model: the dynamic nature of words
used in semantics and grammar, and how these usages should change as the language environment
evolves. To solve the two issues raised above, they develop a method of deep contextualized
word representation. The bi-directional language model is applied to learn the final word
vectors (forward and backward Language Model (LMs)). Instead of using solely the last layer
representations like other contextual word representations, ELMo adopts a linear concatenation
of representations learned via a bidirectional language model. ELMo gives alternative word
representations for the same word in different sentences. It learns word representations based
on the representations gained through the Bi-language model (BiLM). In both forward and
backward LMs, the training phase of BiLMs utilizes the log-likelihood of sentences. After

concatenating hidden representations from the forward LM
→
h
LM

n,j and backward layers LM
←
h
LM

n,j ,
the final vector is produced, where j = 1, 2, · · · , L, and it is given by

BiLM =
k∑

n=1

(log p(tn|t1, · · · , tn−1; Θx,
→
ΘLSTM ,Θs)

+ log p(tn|t1, · · · , tn−1; Θx,
←
ΘLSTM ,Θs)).

The forward and backward directions share the token representation parameters and softmax

parameters Θx and Θs, respectively. The forward
→
ΘLSTM and backward

←
ΘLSTM are parameters.

ELMo extracts the representations acquired from BiLM from an intermediary layer and performs
a linear combination for each token in a downstream task. As shown below, BiLM contains
2L+ 1 set representations.

Rn = (XLM
x ,

→
h
LM

n,j ,
←
h
LM

n,j |j = 1, · · · , L)
= (hLM

n,j |j = 0, · · · , L),

where hLM
n,0 = xLM

n is the layer of token and hLM
n,j = [

→
h
LM

n,j ,
←
h
LM

n,j] for each of the BiLSTM layer.
ELMo is the combination of these given characteristics unique to the task, where all given layers
in M are flattened to a single vector and is given by,

ELMotaskn = E(Mn; Θ
task) = γtask

L∑
j=0

staskj hLM
h,j , (2.13)

where stask is a softmax normalized weight for the combining of representations from multiple
layers, and γtask is a hyper-parameter for optimization and scaling of the representation.

2.3.5 Bidirectional Encoder Representations from Transformers (BERT)

BERT [43] is trained on large amounts of free text and then fine-tuned separately without the use
of custom network architectures. BERT is a contextualized word representation LM in which

22

the transformer DNN uses parallel attention layers instead of sequential recurrence [30]. BERT
is trained on two concepts of unsupervised tasks that encourage bidirectional prediction and
sentence-level understanding:

• Masked Language Model (MLM), where 15% of the tokens are masked randomly and
trained to predict those masked tokens.

• Next Sentence Prediction (NSP), where a pair of sentences are given to the model and
trained to identify if the two sentences are in context.

The purpose of the second assignment is to collect long-term or pragmatic information. BERT
is trained based on the Books Corpus [44] dataset as well as English Wikipedia text passages.
BERT-Base and BERT-Large are the two pre-trained models offered. BERT can be utilized to
unannotated data or fine-tuned task-specific data obtained directly from the pre-trained model.

A growing amount of research is looking into what aspects of language BERT is able to
learn from unlabeled data as a result of their recent success in NLP. Most recent investigation
has focused on internal vector representations or model outputs (such language model surprise)
(e.g., probing classifiers). Recent research has looked at this issue by analyzing the language
model outputs on a set of carefully selected input sentences [45] or by looking into the internal
vector representations of the model using techniques like probing classifiers [46].

A growing amount of research is looking into what aspects of language BERT is able to learn
from unlabeled data as a result of their recent success in NLP. Most recent investigation has
focused on internal vector representations or model outputs (e.g., probing classifiers). Recent
research has looked at this issue by analyzing the language model outputs on a set of carefully
selected input sentences [45] or by looking into the internal vector representations of the model
using techniques like probing classifiers [46]. Regarding the interpretation of BERT, it was
studied in [2] the structure of attention maps of the BERT. Specifically, they studied the behaviour
of attention head and discovered recurring behaviors in them, such as paying particular attention
to fixed positional offsets or paying attention extensively to the entire text. They also claimed
that the deliminator token [SEP], which is used by the model as a sort of no-op, receives an
unexpectedly large amount of attention from BERT.

2.4 Summary

In this chapter, we have discussed several background concepts underlining this thesis. This
thesis studies different concepts of interpretable machine learning models, deep learning models
and the models associated with NLP in detail. The preliminaries used in the literature form the
basis for the proposed architecture in this thesis. This thesis combines the technology of each
section described above to formulate interpretable architectures for NLP and to maintain the
robustness of the models. We have employed TM in the majority part of the thesis (Paper A, B,
D, E, F) and deep learning models as the support to TM and as the state of the art for comparison
(Paper C, F).

23

Chapter 3

Contributions

In this chapter, we describe and elaborate on the contributions of this thesis. As discussed in the
previous chapter, we divide our contributions into two aspects: Interpretable Text Classification
using TM and Interpretable Text Classification using Neural Network. The main contribution of
this thesis is to design interpretable architectures and algorithms for NLP where we first adopt
the TM to model various NLP tasks along with its enhanced performance and robustness (to be
detailed in 3.1). Thereafter, we design an interpretable model using DNN-based architecture
where we remove positional embedding that includes ambiguity in the interpretation of the
ABSA task. We then employ the information from both TM and DNN to enhance the attention’s
interpretation while maintaining the performance (to be detailed in 3.2). The final goal of the
thesis is to have a fine-tuned balance between accuracy and interpretability.

3.1 Interpretable Text Classification Using TM

This chapter describes the NLP architectures and algorithms using TM. Specifically, we propose
several architectures that deal with extracting novel interpreting methods with TM. For a better
understanding of what the model’s interpretation looks like, we adopt the WSD task that is based
on BOW techniques (Subsection 3.1.1). We then extend it to design an algorithm that maps
position-dependent features into TM, which helps TM to understand where to concentrate on a
given context (Subsection 3.1.2). We employ a popular evaluation framework called ABSA task
for the evaluations. Since the interpretation of the model comes with a decrement in accuracy
and the Boolean nature of TM restricts us to use any pre-trained information, we design a feature
augmentation technique that appends similar features that enhance the performance as well as
interpretation of the model (Subsection 3.1.3). At last, we tackle one of the most important
issues of NLP: Spurious Correlations. We extend our study on TM and design a robust text
classification model against spurious correlations (Subsection 3.1.4). Hence this dis-jointly
oriented architectures and algorithms, when put together, gives a robust and reliable interpretable
NLP model.

3.1.1 Bag-of-words based Text Classification

The Boolean BOW is the base for text representation in TM. TM is a recent ML model that is
interpretable because of its learning ability in the form of propositional logic. It is interpretable

25

in the sense that it decomposes problems into self-contained sub-patterns that can be interpreted
in isolation. Each sub-pattern is represented as a conjunctive clause, which is a conjunction of
literals, with each literal representing either an input bit or its negation. However, this logic
is easily interpretable only if the combination of literals is in limited numbers, which is very
subjective based on each individual. In the case of NLP, where the vocabulary can range to
thousands, it is next to impossible to interpret it thereby making the claim questionable. Hence,
we design a novel interpreting technique using the frequency of the literal appearing in the clause.
This technique can compact the number of literals and can be obtained based on the count for
easier interpretation.

WSD is one of the unsolved tasks in NLP [47] with rapidly increasing importance, particularly
due to the advent of chatbots. WSD consists of distinguishing the meaning of homographs –
identically spelled words whose sense or meaning depends on the surrounding context of words
in a sentence or a paragraph. WSD is one of the main NLP tasks that still revolves around the
perfect solution of sense classification and indication [48], and it usually fails to be integrated
into NLP applications [49]. Many supervised approaches attempt to solve the WSD problem
by training a model on sense annotated data [50]. However, most of them fail to produce
interpretable models. Because word senses can be radically different depending on the context,
interpretation errors can have adverse consequences in real applications, such as chatbots. It is
therefore crucial for a WSD model to be easily interpretable for human beings, by showing the
significance of context words for WSD.

Although some of the rule-based methods, like decision trees, are somewhat easy to interpret,
other methods are out of reach for comprehensive interpretation [51], such as DNNs. Despite
the excellent accuracy achieved by DNNs, the “BlackBox” nature impedes their impact [52]. It
is difficult for humans to interpret the decision-making process of artificial neurons. Weights
and bias of deep neural networks are in the form of fine-tuned continuous values that make
it intricate to distinguish the context words that drive the decision for classification. Some
straightforward techniques such as Naive Bayes classifier, logistic regression, decision trees,
random forest, and support vector machine are therefore still widely used because of their
simplicity and interpretability. However, they provide reasonable accuracy only when the data is
limited.

3.1.1.1 Basic Concept of TM for Classifying Word Senses

The first step in our architecture for WSD is to remove the stop-words from the text corpus,
and then stem the remaining words1. Thereafter, each word is assigned a propositional variable
xk ∈ {0, 1}, k ∈ {1, 2, . . . , n}, determining the presence or absence of that word in the context,
with n being the size of the vocabulary. Let X = [x1, x2,, xn] be the feature vector (input)
for the TM.

The above feature vector is then fed to a TM classifier as explained in Section 2.1.4, whose
overall architecture is shown in Fig. 3.1. Multiclass TM consists of multiple TM and each TM
has several TA teams which is expanded in Fig. 3.1(b).

1In this work, we used the PortStemmer package.

26

Figure 3.1: The architecture of (a) multiclass TM, (b) a TA-team forms the clause Cj
i , 1 ≤ j ≤ q,

1 ≤ i ≤ m.

3.1.1.2 Interpretable Classification Process

We now detail the interpretability once the TM has been trained. In brief, the interpretability
is based on the analysis of clauses. Let us consider the noun “apple” as the target word. For
simplicity, we consider two senses of “apple”, i.e., Company as sense s1 and Fruit as sense s2.
The text corpus for s1 is related to the apple being a company, whereas for s2 it is related to the
apple being a fruit.

Let us consider a test sample Itest = [apple, launch, iphone, next, year] and how its sense is
classified based on the context words. This set of words is first converted to binary form based
on a bag of words.

To extract the clauses that vote for sense s1, the test sample Itest is passed to the model and
the clauses that vote for the presence of sense s1 are observed as shown in Fig. 3.2. The literals
formed by TM are expressed in indices of the tokens. For ease of understanding, it has been
replaced by the corresponding word tokens. The green box shows that the literal is non-negated
whereas the red box denotes the negated form of the literal as shown in Fig. 3.2. For example,
the sub-patterns created by clause C3 = apple ∧ ¬orange ∧ ¬more. These clauses consist of
included literals in conjunctive normal form (CNF). Since the clauses in the TM are trained

27

1 0 0 1 0

apple, launch, iphone, next, yearTokens

Binary input

0 1 2 k-1 kIndex

apple orange year NA

apple iphone NA NA

orange next year NA

orange like launch iphone

apple orange more NA

orange like apple more

apple like iphone orange

Figure 3.2: Structure of clauses formed by the combination of sub-patterns. Green color indicates
the literals that are included as original, red color indicates the literals that are included as the
negated form and the blue color boxes indicates that there are no literals because not all the
clauses have the same number of literals.

sample-wise, there exist several randomly placed literals in each clause. These random literals
just occur because of randomly picked words that do not effect the classification. These literals
are assigned to be non-important literals and their frequency of occurrence is low. On the other
hand, the literals that have a higher frequency among the clauses are considered to be important
literals and hence makes significant impact on classification. Here, we emphasize on separating
important and non-important literals for easy human interpretation. The general concept for
finding the important words for a certain sense is to observe the frequency of appearances for a
certain word in the trained clauses. To do that, in the above example, once the TM is trained, the
literals in clauses that output 1 or votes for the presence of the class s1 for Itest are collected first,
as shown in Eq. (3.1):

Lt =
⋃
k,j,
∀Cj=1

{xj
k,¬x

j
k}, (3.1)

where xj
k is the kth literal that appears in clause j and ¬xj

k is the negation of the literal. Note that
a certain literal xk may appear many times in Lt due to the multiple clauses that output 1. Clearly,
Lt is a set of literals (words) that appears in all clauses that contribute to the classification of
class s1. The next step is to find frequently appearing literals (words) in Lt, which correspond to
the important words. We define a function, β(h,H), which returns the number of the elements h
in the set H . We can then formulate a set of the numbers for all literals xk and their negations
¬xk in Lt, k ∈ {1, 2, . . . , n}, as shown in Eq. (3.2):

St =
{ ⋃

k=1:n

β(xk, Lt),
⋃

k=1:n

β(¬xk, Lt)
}
. (3.2)

We rank the number of elements in set St in descending order and consider the first η percent
in the rank as the important literals. Similarly, we define the last η percent in the rank as
non-important literals. To distinguish the important literals more precisely, several independent
experiments can be carried out for a certain sense. Following the same concept, the literals in M

28

Datasets
Micro-F1 Macro-F1

FTX-B FTX-C BRT-B TM FTX-B FTX-C BRT-B TM
Apple 96.3 97.8 99.0 97.58 96.6 97.7 99.0 97.45
JAVA 98.7 99.5 99.6 99.38 61.1 84.1 99.8 99.35
Spring 86.9 92.5 97.4 90.78 78.8 96.4 97.2 90.76
Crane 87.9 94.9 94.2 93.63 88.0 94.8 94.1 93.62

Table 3.1: Results on the full CoarseWSD balanced dataset for 4 different models: FastText-Base
(FTX-B), FastText-CommonCrawl (FTX-C), 1 Neural Network BERT-Base (BRT-B) and TM.
Table cells are highlighted (dark blue to light blue) for better visualization of accuracy.

different experiments can be collected to one set Lt(total) as shown in Eq. (3.3):

Lt(total) =
M⋃
e=1

(Lt)e, (3.3)

where (Lt)e is the set of literals for the eth experiment. Similarly, the counts of all literals in
these experiments, stored in set St(total) shown in Eq. (A.8), are again ranked and the top η

percent is deemed as important literals and the last η percent is the non-important literals. The
parameter η is to be tuned according to the level of human interpretation required for a certain
task.

St(total) =

{ ⋃
k=1:n

β(xk, Lt(total)),
⋃

k=1:n

β(¬xk, Lt(total))

}
. (3.4)

3.1.1.3 Results

To illustrate the interpretability, let us take a sample as an example to extract the literals that are
responsible for the classification of an input sentence: “former apple ceo, steve jobs, holding a
white iphone 4”. Once this input is passed through the model, TM predicts its sense as a company
and we examine the clauses that output 1. We append all the literals that are presented in each
clause and calculate the number of appearances for each literal. The number of appearances of a
certain literal for the selected sample after one experiment (exp1) is shown in Figs. 3.3 and 3.4
by a blue line. After five experiments (exp5), the number for a certain literal is shown by a red
line in Figs. 3.3 and 3.4. Clearly, it makes sense that the negated form of the mostly-appearing
literals in Fig. 3.3, i.e., “not tree”, “not fruit”, “ not cherries” etc. indicate that the word “apple”
does not mean a fruit but a company. Nevertheless, as stated in the previous section, there are
also some literals that are randomly placed in the clause and are non repetitive because the counts
refuse to climb up for the same input, marking them not important literals, as shown in Fig. 3.4.

3.1.2 Position Dependent Text Classification

From the previous section, we have seen that a simple BOW technique performs decently using
TM and the interpretation also makes sense. However, some NLP tasks are complicated and
needs more information than words in the context. There are numerous tasks where the positions

29

tre
e

fru
it

ch
er
rie

s
or
ch

ar
d

ga
rd
en

pe
ar

ar
ea

so
un

d
pl
an

t
gr
ow

or
an

ge
cu

lti
va

rs
po

ta
to

go
ld
en st
uf

st
em

re
ve

al
ed bo
il

th
ym

e
as
pe

n v
ro
pe

re
sis

t
bo

ll
m
ea

n
va

rie
ty

m
od

e
to
m
at
o

ch
ee

s
ca
bl
e

literals

0

5

10

15

20

25

30

35

40

co
un

ts

exp1
exp5

Figure 3.3: Count of first 30 literals that are in negated form for classifying the sense of apple as
company. (considered as important literals)

of the words are important to be considered. One such task is ABSA where the sentiment of the
aspect word has to be categorized based on the context where it has been used. DNN models that
employ LSTM/GRU as language representation integrate positional embedding to use additional
information about aspect words. Since TM works with Boolean input, there is no simple way
to integrate this information in binary form. Hence, we propose a binary-form BOW that is
encoded so that the information on the aspect word and context words is retained for sentiment
classification. We further adapt the BOWs as input to the TM, enabling learning of aspect-based
sentiment patterns in propositional logic.

Sentiment analysis, which identifies people’s opinions on specific topics, is a classic problem
in NLP. Under the umbrella of sentiment analysis, ABSA is a fine-grained evaluation framework
for sentiment classification [53], and it has become a hot research topic [54]. Among various
tasks in ABSA, this study focuses on the sentiment polarity (positive, neutral, negative) of a
target word in given comments or reviews. For example, let us consider a review: “Certainly
not the best sushi in New York, however, it is always fresh and the place is very clean, sterile”.
The target word “sushi” is closely associated with its context words “not best”, assorting it as a
negative polarity. The target word, “place”, is associated with its context words “clean” and

“sterile”, classifying it as a positive sentiment. Such a complex form of sentiment classification
is highly dependent on where the word appears in the sentence. To address this challenge,
several recent approaches to ABSA have been based on attention mechanisms [55]. Although the
accuracy of attention-based ABSA approaches are progressively improved, the interpretability of
these models is still questionable, making them less trustworthy. Not surprisingly, little research
has been done on ABSA learning techniques that are interpretable at a human level [56].

Recently, interpretable AI has taken a big leap in industrial application [57]. Indeed, the
scientific community has performed extensive research on ways to interpret neural networks. In a

30

pi
lo
t

va
ria

nt nt
p

ev
ol
ut
io
n

ea
rli
es
t

an
de

rs
on

pa
la
te

liv
ec

yl
e

bo
ss ss
d

ho
wa

rd
cr
ab

lic
or
ice

in
se
ct
ici
de

do
nn

yb
ro
ok

pe
ar
m
ai
n

fre
el
y

vi
sa

riv
al iso tu
ft

ke
nt

se
ns

e
isi
gh

t
ev

ol
ve el
se

ca
ss
av

a
as
tro

na
ut

br
ed

ha
nd

se
t

literals

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

co
un

ts

exp1
exp5

Figure 3.4: Count of last 30 literals that are in negated form for classifying the sense of apple as
company. (considered as non-important literals)

modern neural network, one can use the fact that the variants of attention [58] assign soft weights
to the input representations, and then extract highly weighted tokens as rationales. However,
these attention weights do not provide faithful explanations for classification [3, 4, 59, 60]. On
the other hand, certain classic models, like Decision Trees, are particularly easy to understand,
yet still compromise on accuracy compared with neural networks. Hence, an effective trade-off
between accuracy and interpretability has still not been achieved.

3.1.2.1 Input Binarization

Usually, the sentiment of the aspect word is reflected by its surrounding words in a sentence, as
shown in Fig. 3.5. In this example, the aspect word “price” has positive sentiment due to the
word “reasonable” in the context. Similarly, for “service”, the context word “poor” describes
its negative sentiment. This reveals that the sentiment of aspect words heavily relies on its
position in a sentence and thus position embedding [61] is necessary. Such embedding creates
a probability distribution of the sentence based on the aspect word. Recently, position-aware
modelling has shown promising results on ABSA tasks [62].

Since TM requires binary inputs, to utilize TM for interpretability, the inputs must be
binarized. It is challenging to incorporate the required position-based word relations in binary
form, to allow for ABSA. In particular, since a TM does not employ any world knowledge like
Word2vec [35], Elmo [63] or BERT [43], so as to retain the interpretability of the model, we
reduce the size of vocabulary by replacing the sentiment carrying words with a common token.
Understandably, without pre-trained embeddings, a model cannot find the similarity between
two semantically related words such as “excellent” and “good”. Hence, we adopt Opinion
Lexicon [64], which is a list of English positive and negative sentiment words. In more details,
we replace every possible word in the dataset by the common token “positive” or “negative”, as

31

The price is reasonable although the service is poor. price

The price is reasonable although the service is poor. service

Sentence Aspect word

Figure 3.5: Representation of an aspect word and its surrounding words.

shown in Fig. 3.6. Such external knowledge also helps to reduce the vocabulary size thereby
decreasing the sparsity of BOW representations.

The	price	is	reasonable	although	the	service	is	poor.

The	price	is	positive	although	the	service	is	negative.

Figure 3.6: Replacement of sentiment-carrying words with a common sentiment token using
Opinion Lexicon.

Once the vocabulary size is determined, the context word and the aspect word can be
converted into binary form, named as BOWcontext and BOWaspect respectively. Since BOW in
binary form does not consider the frequency of the replaced common tag (i.e., “positive” and
“negative”), it becomes a rough representation of those tokens. In order to determine the location
of these sentiment-carrying tokens, the sentence is split into two parts, divided by the aspect
word. More specifically, we create additional binary vectors LOC1

vec and LOC2
vec, representing

the location of the common tokens. The dimension of LOC1
vec and LOC2

vec is three (the 1st bit:
negative, the 2nd bit: no sentiment, the 3rd bit: positive) as shown in Fig. 3.7. LOC1

vec represents
the presence of the common tokens “positive” or “negative” in the first part. If there are no
sentiment tags, this is represented by “no sentiment”. Similarly, LOC2

vec represents the presence
of the common tokens in the second part.

After the pre-processing of inputs, we use SentiWordNet to obtain the sentiment score (SC) of
the 1st part and the 2nd part of the split sentence. This involvement of such additional knowledge
enrich the input information. We adopt the sentiment score in a 3-D binary form for each part of
the sentence. The SC vector SC1

vec for the 1st part of the context is given by Eq. (3.5). Similarly,
vector SC2

vec is utilized for the second part of the context.

SC1
vec =

[0, 0, 1](positive), if SC > 0,

[1, 0, 0](negative), if SC < 0,

[0, 1, 0](no sentiment), if SC = 0.

(3.5)

After processing all these binary representations, we concatenate them all to make a final input
vector of size (2n+ 12) as shown in Fig. 3.8.

32

The	food	is	very	positive	and	the	place	is positive as	well.

The	food	is	very	positive	and	the is	positive	as	well.

Figure 3.7: 3-bit input feature representing the location of common sentiment-carrying tokens:
negative, no sentiment, and positive.

Input	vector	=

n n 3 3 3 3dimension

Figure 3.8: Construction of binary input by concatenating all the pre-processed features.

3.1.2.2 The TM based ABSA

TM has a novel game theoretic strategy that regulates a decentralized team of TAs. This strategy
guides the TAs to learn an arbitrarily complex propositional formula by including or excluding
certain literals. More specifically, the included literals, by the operation of conjunction, formulate
clauses. Each clause, after training, is expected to capture a sub-pattern. The overall pattern is
decided by summing up the output of all clauses for any unknown input. The architecture for
ABSA using TM is shown in Figs. 3.9 and 3.10.

The food is very positive and the place is positive as well.

0, 1, 0, 0, 1, 0,, 0, 0, 1, 0, 0, 0, 1,, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1

Figure 3.9: TA team forms a Clause Cj
i by either including or excluding the input features.

Let us consider the input feature as a vector with a vocabulary size of n words, which is
represented in BOW as Xs = [x1, x2, x3, ···, xn, ···, x2n, x2n+1, x2n+2, ···, x2n+12] with xk∈{0,1}
and k ∈ {1, . . . , 2n + 12}. Here, [x2n+1, x2n+2, x2n+3] and [x2n+4, x2n+5, x2n+6] represent

33

Argmax
Operator

y

Figure 3.10: (a). The sum of the votes for the clauses offers a score for a particular class. (b).
Argmax operator decides the output class based on the score of the clauses in each class.

LOC1
vec and LOC2

vec respectively. Similarly, [x2n+7, x2n+8, x2n+9] and [x2n+10, x2n+11, x2n+12]

represent SC1
vec and SC2

vec respectively. We then feed this position dependent input feature
Xs into the TM model for evaluation as explained in Section 2.1.4. The step-by-step learning
process for ABSA-based TM is explained in Section B.3.3.

3.1.2.3 Results

For evaluation we used ABSA dataset from SemEval-2014 Task 4. The task has two domain-
specific datasets, namely, Restaurant 14 (res14) and Laptop 14 (lap14). These datasets are
provided with training and testing data. In our experiment, we evaluate the proposed method and
compare it with related approaches for ABSA as baselines.

• ContextAvg averages the word embedding to form a context embedding [65].

• LSTM uses the last hidden vector of the LSTM for classification [28].

• TD-LSTM utilizes two LSTMs to learn the language model from the left and the right
contexts of the aspect [65].

• ATAE-BiLSTM is an attention-based LSTM with Aspect Embedding model [66].

• MemNet integrates the content and the position of the aspect word into a deep neural
network [65].

• RAM is a multi-layer architecture where each layer consists of attention-based aggregation
of word features and a GRU cell [67].

• IAN is an Interactive Attention Network model that calculates the attention weights of the
word in its sentiment and aspect interactively [55].

• PRET+MULT uses two approaches of transfer knowledge from document level using
pretraining and multitask training [68].

• HCSN proposes a Human-like Semantic Cognition network for the ABSA task, motivated
by the human beings’ reading cognitive process [69]. We show that performance of our
proposed scheme is quite similar to this technique with high interpretability.

34

• TNet employs a CNN layer instead of attention layer to extract features from the trans-
formed word representations originated from a bi-directional RNN layer [70].

• AGDT is an Aspect-Guided Deep Transition model that uses the given aspect to direct the
sentence encoding from scratch with specially designed deep transition architecture. This
model generates the aspect-based sentence representation and hence predicts sentiment
more accurately [71].

Methods
Restaurant 14 Laptop 14

Accuracy Macro-F1 Accuracy Macro-F1
ContextAvg 71.5 58.0 61.5 53.9
LSTM 74.3 63.0 66.5 60.1
TD-LSTM 75.6 64.5 68.1 63.9
ATAE-BiLSTM 77.6 65.3 68.7 64.2
MemNet 76.9 66.4 68.9 62.8
RAM 78.5 68.5 72.1 68.4
IAN 78.6 NA 72.1 NA
PRET+MULT 79.1 69.7 71.2 67.5
HCSN 77.8 70.2 76.1 72.5
TNet 80.79 70.84 76.01 71.47
AGDT 78.85 NA 71.50 NA

TM based ABSA
78.02 67.85 73.51 70.82
(76.40 ± 1.0) (64.01 ± 0.8) (71.47 ± 0.9) (67.48 ± 1.5)

Table 3.2: Experiment results of various approaches for SemEval-2014 dataset. The upper
results show the best reproducible accuracy and lower ones represent the mean and the standard
deviation of the last 50 epochs when running the model for five times.

For pre-processing of text, we substitute the short form to its full form, such as “isn’t” to
“is not”. Additionally, we stem the words to reduce the vocabulary size created due to spelling
mistakes and variants of words2. The remaining pre-processing procedure has already been
explained before. We train the TM model on both the datasets for 100 epochs each. Since
the output sentiment label has imbalanced training samples, we use two evaluation metrics:
Accuracy and Macro-F1 [72]. Following most of the related studied within the ABSA task,
we report the best reproducible results by running the ABSA TM for 100 epochs, as shown in
Table 3.2. We have reported the highest reproducible accuracy along with its mean and standard
deviation obtained during 5 experiments. As we can see, Context2vec and LSTM perform quite
poorly as they do not consider the aspect information when deciding the sentiment polarity.
However, due to the consideration of left and right context information, TD-LSTM performs
slightly better than LSTM. The variants of attention perform consistently better than LSTM
and TD-LSTM. This is due to the fact that attention captures important information with regard
to the aspect word. Other methods like RAM and MemNet perform slightly better because
of the integrated memory in sentiment modeling. Another kind of the neural network-based

2In this work, we adopt the Porter Stemmer.

35

model is HCSN. HCSN utilizes a human-being-like cognitive network for ABSA, which is
motivated by the principles of human beings’ reading cognitive processes. Its pre-reading, active
reading, and post-reading technique mimics the human behavior, which is then fed to the GRU
network. As interesting as it seems, the involvement of the neural network still brings this
below human-level interpretation on what drives the model to make the decision. Our model,
which offers a transparent view of the learning process, obtains quite similar or higher accuracy
compared to HCSN and PRET+MULT techniques. However, the TNet architecture with a CNN
layer, which extracts salient features from transformed word representation, achieves higher
accuracy compared to TM. AGDT is a model that uses Aspect guided GRU along with Max
pooling to obtain Aspect Concatenated Embedding. It obtains quite similar accuracy compared
to TM on Restaurant 14, whereas accuracy is lower on Laptop 14. Note that we do not use
any pre-trained word2vec or GloVe embedding for TM and our model still performs better than
LSTM, TD-LSTM as well as attention-based BilSTM for both datasets. The Macro-F1 score
shows that TM does not only greedily learn a particular class but also creates a set of features for
each and every class. Even though the performance of our proposed model does not outperform
the state-of-the-arts models, it reaches to comparable accuracy and Macro-F1 with transparent
learning and interpretable prediction.

In addition to the above comparisons, we demonstrate here the necessity of including
both LOCs and SCs vectors. First we only used the LOCs in the model and observed that
the accuracy of the model reaches 76.51%. Secondly, we replaced LOCs with SCs and the
performance of the model decreased to 75%. This shows that both vectors add useful information
when employed together thereby reaching the stated accuracy of 78.02%.

To compare the performance of TM with classical interpretable models such as Logistic
Regression (LR), we use our preprocessed BOW as input to LR. We observed that the TM
performs better than LR in terms of accuracy. LR obtains the accuracy of 75.38% as compared
with TM’s 78.02% on the Restaurant 14 dataset. Indeed, those two approaches operate based
on different concepts. LR is trained by adjusting weights and bias. TMs, on the other hand,
relates words using propositional logic to represent a class. Employing propositional logic for
knowledge representation provides rules rather than a mathematical computation. This crucial
difference between a rule-based approach and regression methods is explored in [73]. One can
analyze why a LR model assigns a particular class to an input by inspecting the weights and bias.
However, assigning them meanings requires understanding of the mathematical computation that
LR carries out. Since TM creates a list of patterns for a particular class based on the interaction of
aspect words and the sentiment words in the context, its conjunctive clauses hold information of
words in a rule-based form. It is well-known that evaluating a conjunctive clause is particularly
easy for humans, making them natively interpretable and easier to explain than LR.

3.1.3 Enhancing Interpretable Clauses and Performance of TM

TM has shown promising results in above-mentioned NLP tasks, namely sentiment analysis,
document classification, and Word Sense Disambiguation [20, 74]. To obtain human-level
interpretability, legacy TM employs Boolean input features such as BOW. However, the BOW
representation makes it difficult to use any pre-trained information, for instance, word2vec and
GloVe word representations. This restriction has constrained the performance of TM compared

36

with DNNs in NLP. To reduce the performance gap, we propose a novel way of using pre-
trained word representations for TM. The approach significantly enhances the performance and
interpretability of TM. We achieve this by extracting semantically related words from pre-trained
word representations as input features to the TM. Our experiments show that the accuracy of the
proposed approach is significantly higher than the previous BOW-based TM, reaching the level
of DNN-based models.

A key advantage of DNN models is distributed representation of words in a vector space. By
using a single-layer neural network, Mikolov et al. introduced such a representation, allowing
for relating words based on the inner product between word vectors [35]. One of the popular
methods is skip-gram, an approach that learns word representations by predicting the context
surrounding a word within a given window length. However, skip-gram has the disadvantage of
not considering the co-occurrence statistics of the corpus. Later, Pennington et al. developed
GloVe – a model that combines the advantages of local window-based methods and global
matrix factorization [75]. The foundation for the above vector representation of words is the
distributional hypothesis that states that “the word that occurs in the same contexts tend to
have similar meanings” [76]. This means that in addition to forming a rich high-dimensional
representation of words, words that are closer to each other in vector space tend to represent
similar meanings. As such, vector representations have been used to enhance for instance
information retrieval [77], name entity recognition [78], and parsing [79].

However, in the case of TM, such word representations cannot be directly employed because
they consist of floating-point numbers. First, these numbers must be converted into a Boolean
form for TM to use, which may result in information loss. Secondly, replacing the straightforward
BOW of a TM with a large number of floating-point numbers in fine-grained Boolean form
would impede interpretability. Here, we propose a novel pre-processing technique that evades
the above challenges entirely by extracting additional features for the BOW. The additional
features are found using the pre-trained distributed word representations to identify words that
enrich the BOW, based on cosine similarity. In this way, TM can use the information from word
representations for increasing performance, and at the same time retain the interpretability of the
model.

3.1.3.1 Boosting TM BOW with Semantically Related Words

Here, we introduce our novel method for boosting the BOW of TM with semantically related
words. The method is based on comparing pre-trained word representations using cosine similar-
ity, leveraging distributed word representation. There are various distributional representations
of words available, which are obtained from different corpora, using various techniques, such as
word2vec, GloVe, and fastText. We here use GloVe because of its general applicability.

3.1.3.2 Input Feature Extraction from Distributed Word Representation

Distributed word representation does not necessarily derive word similarity based on synonyms
but based on the words that appear in the same context. As such, the representation is essential
for NLP because it captures the semantically interconnecting words. Our approach utilizes this
property to expand the range of features that we can use in an interpretable manner in TM.

37

Consider a full vocabulary W of m words, W = [w1, w2, w3 . . . , wm]. Further consider a
particular sentence that is represented as a Boolean BOW X = [x1, x2, x3, . . . , xm]. In a Boolean
BOW, each element xr, r = 1, 2, 3, . . . ,m, refers to a specific word wr in the vocabulary W .
The element xr takes the value 1 if the corresponding word wr is present in the sentence and
the value 0 if the word is absent. Assume that n words are present in the sentence, i.e., n of
the elements in X are 1-valued. Our strategy is to extract additional features from these by
expanding them using cosine similarity. To this end, we use a GloVe embedding of each present
word wr, r ∈ {z|xz = 1, z = 1, 2, 3 . . . ,m}. The embedding for word wr is represented by
vector we

r ∈ ℜd, where d is the dimensionality of the embedding (typically varying from 25 to
300).

We next introduce two selection techniques to expand upon each word:

• Select the top k most similar words,

• Select words up to a fixed similarity angle cos(θ) = ϕ.

For example, let us consider two contexts: “very good movie” and “excellent film, enjoyable”.
Figs. 3.11 and 3.12 list similar words showing the difference between top k words and words
within angle cos(θ), i.e., ϕ. In what follows, we will explain how these words are found.

excellent film, enjoyable

excellent

good

similarity

0.703

superb 0.680

terrific 0.656

wonderful 0.584

quality 0.603

best 0.550

exceptional 0.550

perfect 0.535

film similarity enjoyable similarity

impressive 0.534

decent 0.532

movie 0.858

films 0.839

movies 0.716

documentary 0.656

directed 0.683

starring 0.651

cinema 0.637

screenplay 0.632

drama 0.622

comedy 0.615

entertaining 0.688

pleasurable 0.660

exhilarating 0.647

exciting 0.619

fun 0.625

amusing 0.605

satisfying 0.585

engrossing 0.578

enlightening 0.573

informative 0.571

w
or

ds
 w

ith
in

to
p
k

si
m

ila
r w

or
ds

Figure 3.11: Similar words for an example “excellent film, enjoyable” using 300d GloVe word
representation.

3.1.3.3 Similar Words based on Top k Nearest Words

We first boost the Boolean BOW of the considered sentence by expanding X with (k − 1)× n

semantically related words. That is, we add k− 1 new words for each of the n present words. We
do this by identifying neighbouring words in the GloVe embedding space, using cosine similarity
between the embedding vectors.

Consider the GloVe embedding vectors W e
G = [we

1, w
e
2, . . . , w

e
m] of the full vocabulary

W . For each word wr from the sentence considered, the cosine similarity to each word wt,
t = 1, 2, . . . ,m, of the full vocabulary is given by Eq. (3.6),

38

very good movie

very

extremely

similarity

0.872

quite 0.858

so 0.785

too 0.731

pretty 0.738

really 0.729

well 0.720

always 0.712

good similarity movie similarity

especially 0.709

but 0.707

better 0.765

really 0.736

always 0.717

well 0.704

you 0.707

excellent 0.703

very 0.696

things 0.693

think 0.689

way 0.683

film 0.858

movies 0.849

films 0.790

starring 0.675

hollywood 0.679

comedy 0.658

sequel 0.646

remake 0.624

drama 0.608

actor 0.599

to
p
k

si
m

ila
r w

or
ds

w
or

ds
 w

ith
in

Figure 3.12: Similar words for an example “very good movie” using 300d GloVe word represen-
tation.

ϕt
r = cos(we

r, w
e
t) =

we
r · we

t

||we
r|| · ||we

t ||
. (3.6)

Clearly, ϕt
r is the cosine similarity between we

r and we
t . By calculating the cosine similarity of

wr to the words in the vocabulary, we obtain m values: ϕt
r, t = 1, 2, . . . ,m. We arrange these

values in a vector Φr:
Φr = [ϕ1

r , ϕ
2
r , . . . , ϕ

m
r]. (3.7)

The k largest elements from Φr are then identified and their indices are stored in a new set Ar.
Finally, a boosted BOW, referred to as Xmod, can be formed by assigning element xt value 1

whenever one of the Ar contains t, and 0 otherwise:

Xmod = [x1, x2, x3, . . . , xm], (3.8)

xt =

{
1 ∃r, t ∈ Ar

0 ∄r, t ∈ Ar.

In addition, the vocabulary size for a particular task/dataset can be changed accordingly, which
is usually less than m. Note that implementation-wise, the GloVe library provides the top k

similar words of wr without considering the word wr itself, having similarity score 1. Hence,
using the GloVe library, wr must also be added to the boosted BOW.

3.1.3.4 Similar Words within Cosine Angle Threshold

Another approach to enrich the Boolean BOW of a sentence is thresholding the cosine angle.
This is different from the first technique because the number of additional words extracted will
vary rather than being fixed. Whereas the first approach always produces k − 1 new features
for each given word, the cosine angle thresholding brings in all those words that are sufficiently
similar. The cosine similarity threshold is given by ϕ = cos(θ), where θ is the threshold for
vector angle, while ϕ is the corresponding similarity score.

As per Eq. (3.7), we obtain Φr, which consists of the similarity scores of the given word wr

in comparison to the m words in the vocabulary. Then, for each given word wr, the indices of

39

those scores ϕt
r that are greater than or equal to ϕ (ϕt

r ≥ ϕ) are stored in the set Ar. Similar to
the first technique, the words in W with the indices in Ar are utilized to create Xmod as given by
Eq. (3.8).

Model R8 R52 MR
TF-IDF+LR 93.74 86.95 74.59
CNN-rand 94.02 85.37 74.98

CNN-non-static 95.71 87.59 77.75
LSTM 93.68 85.54 75.06

LSTM (pretrain) 96.09 90.48 77.33
Bi-LSTM 96.31 90.54 77.68

PV-DBOW 85.87 78.29 61.09
PV-DM 52.07 44.92 59.47
fastText 96.13 92.81 75.14

fastText (bigrams) 94.74 90.99 76.24
SWEM 95.32 92.94 76.65
LEAM 93.31 91.84 76.95

Graph-CNN-C 96.99 92.74 77.22
S2GC 97.40 94.50 76.70
BERT 96.02 89.66 79.24

Lguided-BERT-1 97.49 94.26 81.03
Lguided-BERT-3 98.28 94.32 81.06

TM 96.16± 1.52 84.62± 1.8 75.14± 1.2
TM with k 97.50± 1.12 88.59± 1.2 77.51± 0.6
TM with ϕ 96.39± 1.0 89.14± 1.5 76.55± 0.9

Table 3.3: Comparison of feature extended TM with the state of the art for R8, R52 and MR.
Reported accuracy of TM is the mean of last 50 epochs of 5 independent experiments with their
standard deviation.

3.1.3.5 Distributed Word Representation in TM

Consider two contexts for sentiment classification: “Very good movie” and “Excellent film,
enjoyable”. Both contexts have different vocabularies but some of them are semantically related
to each other. For example, “good” and “excellent” have similar semantics as well as “film”
and “movie”. Such semantics are not captured in the BOW-based input. However, as shown in
Fig. D.4, adding words to the BOWs that are semantically related, as proposed in the previous
section, makes distributed word representation available to the TM.

3.1.3.6 Results

In this subsection, we evaluate our TM-based solution with the input features enhanced by
distributed word representation. We have selected various types of datasets to investigate how
broadly our method is applicable: R8 and R52 of Reuters, Movie Review (MR), and TREC-6.
• Reuters 21578 dataset include two subsets: R52 and R8 (all-terms version). R8 is divided
into 8 sections while there are 52 categories in R52.
•MR is a movie analysis dataset for binary sentiment classification with just one sentence per

40

review [80]. In this study, we used a training/test split from [81]3.
•TREC-6 is a question classification dataset [82]. The task entails categorizing a query into six
distinct categories (abbreviation, description, entity, human, location, numeric value).
Here we use GloVe pretrained word vector that is trained using CommonCrawl with the configu-
ration of 42B tokens, 1.9M vocab, uncased, and 300d vectors. We here compare our proposed
model with selected text classification- and embedding methods.We have selected representative
techniques from various main approaches, both those that leverage similar kinds of pre-trained
word embedding and those that only use BOW. The selected baselines are:

• TF-IDF+LR: This is a bag-of-words model employing Term Frequency-Inverse Document
Frequency (TF-IDF) weighting. Logistic Regression is used as a softmax classifier.

• CNN: The CNN-baselines cover both initialization with random word embedding (CNN-
rand) as well as initialization with pretrained word embedding (CNN-non-static) [83].

• LSTM: The LSTM model that we employ here is from [84], representing the entire
text using the last hidden state. We tested this model with and without pre-trained word
embeddings.

• Bi-LSTM: Bi-directional LSTMs are widely used for text classification. We compare our
model with Bi-LSTM fed with pre-trained word embeddings.

• PV-DBOW: PV-DBOW is a paragraph vector model where the word order is ignored.
Logistic Regression is used as a softmax classifier [85].

• PV-DM: PV-DM is also a paragraph vector model, however with word ordering taken into
account. Logistic Regression is used as a softmax classifier [85]

• fastText: This baseline is a simple text classification technique that uses the average of the
word embeddings provided by fastText as document embedding. The embedding is then
fed to a linear classifier [86]. We evaluate both the use of uni-grams and bigrams.

• SWEM : SWEM applies simple pooling techniques over the word embeddings to obtain a
document embedding [87].

• Graph-CNN-C: A graph CNN model uses convolutions over a word embedding similarity
graph [88], employing a Chebyshev filter.

• S2GC: This technique uses a modified Markov Diffusion Kernel to derive a variant of
Graph Convolutional Network (GCN) [89].

• LguidedLearn: LguidedLearn is a label-guided learning framework for text classification.
This technique is applied to BERT as well [90], which we use for comparison purposes
here.

• Feature Projection (FP): This is a novel approach to improve representation learning
through feature projection. Existing features are projected into an orthogonal space. [91].

41

Model TREC
LSTM 87.19
FP+LSTM 88.83
Transformer 87.33
FP+Transformer 89.51
BAE: BERT 97.6
TM [92] 87.20
TM 88.05± 1.52
TM with k 89.82± 1.18
TM with ϕ 90.04± 0.94

Table 3.4: Comparison of feature extended TM with the state of the art for TREC. Reported
accuracy of TM is the mean of last 50 epochs of 5 independent experiments with their standard
deviation.

From Table 3.3, we observe that the TM approaches that employ either of our feature
extension techniques outperform several word embedding-based Logistic Regression approaches,
such as PV-DBOW, PV-DM, and fastText. Similarly, the legacy TM outperforms sophisticated
models like CNN and LSTM based on randomly initialized word embedding. Still, the legacy
TM falls of other models when they are initialized by pre-trained word embeddings. By boosting
the Boolean BOW with semantically similar features using our proposed technique, however,
TM outperforms LSTM (pretrain) on the R8 dataset and performs similarly on R52 and MR.
In addition, our proposed approach achieves quite similar performance compared with BERT,
even though BERT has been pre-trained on a huge text corpus. However, it falls slightly short of
sophisticated fine-tuned models like Lguided-BERT-1 and Lguided-BERT-3. Overall, our results
show that our proposed feature extension technique for TMs significantly enhances accuracy,
reaching the state-of-the-art accuracy. Importantly, this accuracy enhancement does not come at
the cost of reduced interpretability, unlike DNNs. The state of the art for the TREC dataset is
different from the other three datasets, hence we report the results separately in Table 3.4. These
results clearly show that although the basic TM model does not outperform the recent DNN-
and transformer-based models, the feature-boosted TM outperforms all of those models except
understandably BAE:BERT [93].

3.1.4 Robust Text Classification against Spurious Correlations

In recent years, state-of-the-art NLP models have raised the bar for excellent performance on
a variety of tasks. However, concerns are rising over their primitive sensitivity to distribution
biases that reside in the training and testing data. This issue greatly impacts the performance
of the models when exposed to out-of-distribution and counterfactual data. The root cause
seems to be that many machine learning models are prone to learning shortcuts, modeling simple
correlations rather than more fundamental and general relationships. As a result, such text
classifiers tend to perform poorly when a human makes minor modifications to the data, which

3https://github.com/mnqu/PTE/tree/master/data/mr.

42

raises questions regarding their robustness. Here, we use a rule-based architecture called TM that
learns both simple and complex correlations by ANDing features and their negations. As such, it
generates explainable AND-rules using negated and non-negated reasoning. Here, we explore
how non-negated reasoning can be more prone to distribution biases than negated reasoning.
We further leverage this finding by adapting the TM architecture to mainly perform negated
reasoning using the specificity parameter s. As a result, the AND-rules become robust to spurious
correlations and can also correctly predict counterfactual data. Our empirical investigation of the
model’s robustness uses the specificity s to control the degree of negated reasoning.

Despite impressive advances in DNN architectures for NLP, their implementations still suffer
from various challenges. One of the challenges is associated with DNN’s capability of learning
simple correlations and ignoring more complex ones [94]. This behavior of DNN becomes
questionable when the simple correlation is spurious, absent from the test data, or occurs in an
unfitting context. For instance, in the sentence Nolan’s films are always great mostly because
of his excellent direction, the influential word for predicting a positive sentiment should be
“great” and “excellent” instead of “Nolan’s” and “direction”. However, due to the majority
of samples consist of “Nolan having a great movie”, it makes the classifier learn that “Nolan”
corresponds to a positive sentiment word [95]. Similarly, a toxicity classifier learns that “gay”
corresponds to a toxic comments [96] and a medical diagnosis classification system learns the
disease associated with the patient ID [97]. The issue of spurious patterns also moderately
impacts the out-of-distribution (OOD) generalization of models that are trained on independent
identical distribution (IID) data, resulting in performance degradation when the distribution
shifts.

Researchers recently have found that the decay in model performance, as well as social
bias in NLP, appear out-of-domain due to sensitivity towards spurious signals. One of the
solutions to deal with such vulnerability in NLP models is data augmentation with counterfactual
samples [98], which can help the model learn real causal correlations between input and labels.
For instance, a man-made counterfactual sample of the last example could be Nolan’s films are
always boring mostly because of his poor direction. Inserting such counterfactual data into the
original training sets has shown to be beneficial for learning real causal correlation, thereby
improving the robustness of the model [98]. However, augmentation with counterfactual data
usually relies on a human-in-the-loop system to generate sentiment-flipped samples. For this
process, humans are asked to make minimal and believable edits to generate counterfactual
samples. Even though such an addition of data makes the model robust against spurious
correlations, completing a human-in-the-loop process is costly and time-consuming.

The main reason behind the failure of DNNs on counterfactual data during inference is still
unclear because of their BlackBox nature [52]. What they learn from the data that limits the
models’ robustness against different distribution samples is currently an open research question.
Some researchers argue that the attention mechanism provides an explanation of DNN models,
which assign soft weights to the input representations, and then extract highly weighted tokens
as rationales [58]. However, these attention weights do not provide faithful explanations for
classification [3, 59]. In addition, DNNs fail to use logical reasoning in various tasks. Logical
reasoning is one of the most important prerequisites in NLP that supports various practical
applications such as legal assistants, medical decision support, and personalized recommender
systems. Due to these issues, DNNs have failed to demonstrate their robustness on counterfactual

43

data. On the other hand, a rule-based knowledge system is a powerful tool that offers logical
reasoning because of its explainability. However, most rule-based systems rely on static rules that
are handcrafted. Without learning capability, performance and generalization is limited. Keeping
these two challenges in consideration, we employ a recent architecture called TM, which is an
interpretable rule-based model that learns both simple and complex correlations via conjunctive
clauses [1]. Unlike DNNs and simple rule-based architectures, TM learns rules with logical
reasoning as a human does and it also offers a transparent and interpretable learning [99].

3.1.4.1 Learning Rule-based Clauses for Counterfactual Inference

The step-by-step explanation for the learning process of TM can be found in [100]. Here we
explain briefly the learning of the rule-based clauses in TM for counterfactual inference via an
example. Let the sentence “Long, boring, blasphemous. Never have I been so glad to see ending
credits roll.” be the training sample that has negative sentiment. Each of the input words in the
sentence is controlled by two TAs where TA controls non-negated literal such as “Long”, and TA’
controls the negated form such as “¬Long”. The input that represents this particular sample is a
sparse Boolean bag-of-words. All the vocabulary words that are present in the given sentence
get the truth value 1, while those absent get the truth value 0. By explicitly representing missing
words in vector form like [0, 0, 0, 1, 0, · · · , 0, 1, 0, 0, 0, 1], the representation becomes sparse.
However, logically, such representation not only captures the presence of a particular word,
but also equally well represents those words that are not present. This explicit bag of-words
representation is ideal for TMs. This is because the TM can then pick informative negated
features in the very first hundred iterations of learning using the selection parameter specificity s.
We detail the role of s next.

In TM, each TA that controls a literal decides whether to take the action “Include” or
“Exclude” based on the feedback it receives. There are two types of feedback: Type I Feedback
and Type II Feedback [101]. Type I Feedback is activated when a given input feature is either
correctly assigned to the target label (true positive) or mistakenly ignored (false negative), while
Type II Feedback is activated when an input feature is wrongly assigned to the target label (false
positive). The parameter s, s ≥ 1, plays a very important role in the learning process, as it
controls how strongly the model favours the action “Include”. It also determines how many
“fine-grained” sub-patterns the clauses will acquire. The greater the value of s, the more the
TAs are encouraged to include literals in their clauses. Since s decides which literals take part
in the clause for classification, it is vital to fine-tune it for reducing the vulnerability against
spurious correlation. For the above-mentioned training example, when s is large, the states for
the corresponding TAs in a clause after training are shown in Fig. 3.13. As seen, the high value
of s enforces TA to include many literals in the clause, such as including “ending”, “boring”,
“credits”, “¬friendly”, “¬good”, and “¬like”. Among the included literals, spurious correlations
that do not carry sentiment information, such as “ending” and “credits”, indeed influence the
model’s prediction on counterfactual data.

When we have a small s, as shown in Fig. 3.14, the number of included literals is reduced
and the majority, if not all, of the included literals are in the negated form. One can see from the
figure that the non-negated literals are now not enforced to be included in the clause. The states
in TA for “ending”, “boring”, and “credits” have not reached to action “Include”. Nevertheless,

44

Exclude Include IncludeExclude

1 2 101 102 200100 1 2 101 102 200100

Figure 3.13: States of TAs when s is high for a particular clause.

TM still learns negated features easily in contrast to non-negated features due to sparse input
representation thereby not affecting the states of “¬friendly”, “¬good”, and “¬like”.

Exclude Include IncludeExclude

1 2 101 102 200100 1 2 101 102 200100

Figure 3.14: States of TAs when s is low for a particular clause.

3.1.4.2 Robustness against Counterfactual Sample

In this subsection, we will detail the reason why a trained TM model is robust and insusceptible
to spurious correlations. Let us consider a model trained with a low value of s = 2 and two
sentences with different sentiment labels: S1 with positive and S2 with negative sentiment. From
Fig. 3.15, we can see the behavior of trained clauses for the negative class and the positive class
for the original samples. The rule-based logic that is formulated by TM is in propositional form,
ANDing several literals. The clause associated with propositional logic becomes 1 if an input
satisfies the conjunction.

When context S1 is received by the model, it correctly predicts negative sentiment because it
triggers all the five clauses in the negative class, whereas only one clause for the positive class.
Similarly, when S2 is given, it predicts positive sentiment because the input triggers all five
clauses in the positive class compared to only one clauses in the negative class.

Now consider two human generated counterfactual samples Scf
1 for S1 and Scf

2 for S2 as
shown in Fig. 3.16. For S1, the word “boring” is replaced by “fascinating”; “blasphemous” is
replaced by “soulful”; and “glad” is replaced by “sad”. Similarly, for S2, the word “friendly”
is replaced by “depressing”; “charming” is replaced by “charmless”; and “unpretentious” is
replaced by “pretentious”. This means that the labels for the corresponding counterfactual
samples are now flipped. When Scf

1 is sent to the trained TM model with s = 2, it only triggers
two clauses from the negative class and three clauses in the positive class. Similarly, when Scf

2

is given to the model, it triggers four clauses in the negative class but only one clause in the

45

Figure 3.15: Clause triggered by original samples S1 and S2 on both classes when s = 2.

positive class. Even though the probability of being in a class decreases due to the reduction in
clause score, it still manages to predict such counterfactual samples correctly.

Since most of the entries in the sparse bag-of-word representation are zeros, the majority
of literals presented in the clause will be in the negated form after a few iterations. With a
comparatively small number of included literals due to the small s, the majority of clauses most
likely become monotone in the negated form. Negated literals provide a more general form of
the features that are not presented in a particular input sample thereby being less sensitive to
spurious correlations as compared with the non-negated literals. We can clearly observe from
Fig. 3.16 that the non-monotone clauses that have non-negated features are the ones that fail
to capture counterfactual reasoning. This means monotonous clauses that have only negated
features are more insusceptible to such modified data.

Figure 3.16: Clauses triggered by counterfactual samples Scf
1 and Scf

2 on both classes when
s = 2.

3.1.4.3 Results

In this subsection, we present experimental results for analyzing the performance of TM on
counterfactual data. As we have already discussed the significance of s for inheriting robustness
in the model, we experiment with different values of s on the dataset designed by [98]. This
dataset has been developed using IMDB reviews that consist of 50k samples divided equally
across train/test splits after removing 20% of reviews. Among them, 2.5k reviews have been
split into training, validation, and testing of 1707, 245, and 488 respectively. These reviews
are modified using Amazon’s Mechanical Turk crowdsourcing so that the labels are flipped to

46

generate counterfactual samples [98]. In addition, to evaluate the out-of-domain performance
of the proposed model, we used Amazon reviews [102] on data aggregated over six domains,
i.e., beauty, fashion, appliances, gift cards, magazines, and software, SemEval Twitter sentiment
analysis [103], and Yelp challenge dataset.

We used the original 1.7k samples as the training dataset to evaluate the robustness of the
model on human-generated counterfactual test data of size 488. We also train the model using
counterfactual data of size 1.7k and evaluate it on the original test samples of size 488. The
performance of the model for various values of s is shown in Table 3.5. Other parameters of
TM are the same for all the training datasets selected in the paper, with 3000 clauses per class
and the threshold (T) value of 80 × 16. These parameters are selected by trial and error. For
evaluating the behavior of s, we only validate on the test samples that are not from the same
training data, and the complete performance evaluation is detailed later in the paper. Here, we
use the features extension technique as the preprocessing as in [99]. As seen in Table 3.5, the
accuracy of the model trained on original training samples achieves 72.1% on counterfactual test
data when s = 2, and it decreases as s increases. Similarly, the accuracy of the model trained on
counterfactual training samples achieves 65.20% when s = 2 and decreases as s increases. This
indicates that lowering the value of s fine grains the pattern in the clause with negated literals,
which confirms the robustness against counterfactual data as discussed earlier.

Training Data
s = 2 s = 3 s = 5 s = 10 s = 15 s = 20 s = 30 s = 50

Orig CF Orig CF Orig CF Orig CF Orig CF Orig CF Orig CF Orig CF
Orig (1.7k) - 72.1 - 71.1 - 68.87 - 65.53 - 64.73 - 60.64 - 58.63 - 54.31
CF (1.7k) 65.20 - 63.92 - 62.45 - 62.92 - 61.01 - 59.01 - 57.70 - 54.27 -

Table 3.5: Accuracy of TM on Counterfactual (CF) test data using Original (Orig) training
samples and vice-versa for various values of s.

Training Data
SVM NB ELMo Bi-LSTM BERT TM

Orig CF Orig CF Orig CF Orig CF Orig CF Orig CF
Orig (1.7k) 80.0 51.0 74.9 47.3 81.9 66.7 79.3 55.7 87.4 82.2 85.65 73.56

(84.30 ± 0.78) (72.1 ± 0.40)
CF (1.7k) 58.3 91.2 50.9 88.7 63.8 82.0 62.5 89.1 80.4 90.8 65.98 92.20

(65.20 ± 0.80) (91.09 ± 0.55)
Orig (19k) 87.8 60.9 84.3 42.8 86.5 64.3 86.3 68.0 93.2 88.3 88.14 73.77

(87.94 ± 0.16) (72.46 ± 0.70)
Orig + CF (3.4k) 83.7 87.3 86.1 91.2 85.0 92.0 81.5 92.0 88.5 95.1 84.22 91.2

(83.45 ± 0.42) (89.95 ± 0.75)

Table 3.6: Experiment results of various models trained using Original and Counterfactual
training dataset on their respective opposite test data. The upper results show the best reproducible
accuracy and lower ones represent the mean and standard deviation of the last 50 epochs when
running the model for five times.

To compare the performance of our model with the state of the art, extensive experiments
have been carried out. Since s = 2 performs the best against counterfactual samples, we utilize
this value for performance comparison. In addition to DNN based models, we also include
typical interpretable linear models in our comparison. The models are mainly taken from [98],
as:

47

• Standard Methods: We train linear standard model such as SVM and Naive Bayes (NB)
for sentiment classification using “scikit-learn” [104].

• Bi-LSTM: For training Bi-LSTM, Kaushik et al. [98] restricted vocabulary of 20k, re-
placing out-of-vocabulary as UNK tokens. The model consists of bidirectional LSTM
with hidden dimesion 50, recurrent dropout 0.5, and global max pooling following the
embedding layer.

• ELMo: Kaushik et al. [98] computed contextualized word representation (ELMo) using
character based word representation and bidirection LSTM [63] using weighted sum of
representation of 1024 dimensions.

• BERT: Kaushik et al. [98] used an off-the-shelf uncased BERT Base model to fine tune
each task. In order to consider the BERT’s sub tokenization, token length is set at 350 and
trained for 20 epochs.

As we can see from Table 3.6, when the original data is used as the training samples, SVM’s
accuracy on CF test data drops to 51.0% compared with that of the original test data, i.e., 80%. A
similar trend is observed for NB, Bi-LSTM, and ELMo. Interestingly, the performance of BERT
suffers less perhaps due to the benefit of large pretrained information. However, disregarding
the pre-trained language model of BERT, our proposed TM reaches 73.56% and outperforms
all of the remaining models including 66.7% of ELMo. In the case of CF data as the training
samples, the accuracy on original test samples by previous best model ELMo is 63.8% except
BERT. Again, our proposed TM model outperforms all of them except BERT, achieving 65.98%.
Although the main aim of this part of the thesis is to evaluate TM on different/counterfactual
distribution and it is not necessary to augment both original and CF data, we still show the
performance using augmented data as well as the remaining IMDB data of size 19k as training
samples, and it can be seen that the performance of TM is on par with the other models.

3.2 Interpretable Text Classification Using Neural Network

In this section, we tackle the problem of interpretability in the DNN. DNN, being a BlackBox
in nature, still finds a way to explain its model using the attention weights on top of various
language representation layers such as RNN, LSTM, or GRU. These attention weights assign
soft weights to the input rationales that can be used as the interpretation of the model. As good
as it looks, it only makes sense in the scenario when the input text is either BOW or Sequential
BOW. However, for some peculiar tasks such as ABSA, there is a need for positional embedding
in the input layer. Even though LSTM/GRU are well known to capture the sequential information
of the context, they still fail to concentrate on the target word and its nearby context. Hence, the
majority of the task needs an additional positional embedding integrated into the initial layer of
DNN. As a result, it not only increases the trainable parameters of the model but also disorients
the interpretation of the model because the input rationales now consist of a combination of input
and positional embedding. Since the attention weights give the impact of each input rationales,
using the combined input rationales in the interpretation seems ambiguous. Hence the main focus
of this work is to remove the positional embedding with simple architecture and yet maintain the

48

state-of-the-art performance so that attention weight justifies only input rationales (Subsection
3.2.1). In addition, we use the information from the previous TM-based model to enhance the
explainability of the DNN-based model. The intuition behind this task is that the attention layer
has been argued for being explainable because of its dynamic distinct attention distribution.
Hence we use the information from interpretable TM and enrich the input representation layer of
DNN for attention explanation (Subsection 3.2.2).

3.2.1 Position Dependent Text Classification without Positional Embed-
ding

Positional embedding, in most cases, depends on the distance between the aspect word and
the remaining words in the context, known as the position index sequence. However, these
techniques usually employ both complex preprocessing approaches with additional trainable
positional embedding and complex architectures to obtain state-of-the-art performance. Here, we
simplify preprocessing by including polarity lexicon replacement and masking techniques that
carry the information of the aspect word’s position and eliminate the positional embedding. We
then adopt a novel and concise architecture using two Bidirectional GRU along with an attention
layer to classify the aspect based on its context words.

Various neural network architectures, from simple to complex ones, have been developed for
position-aware sentiment classifications with a focus on the aspect word [61, 105]. A position en-
coding vector developed in [106] has been a popular choice for embedding positional information
in LSTM based models. There the position index of the surrounding words is represented by the
relative distance to the aspect word. Such position embedding creates a probability distribution
among the context that is then embedded along with the word embedding of each word for
classification of sentiments. However, a sophisticated neural network architecture is required for
good performance because of the lack of sentiment lexicon knowledge with the integration of
positional embedding [107]. Even a slight increment of accuracy in ABSA task usually requires
a more complex architecture [108].

Here, we propose a very simple preprocessing of ABSA task by using sentiment lexicons
and a masking technique that removes complex positional embedding thereby requiring a very
straightforward architecture to obtain the state-of-the-art performance. As we know, human
being usually makes sentiment classification of a particular word based on the surrounding
words. Besides, human being, most probably, understands the meaning of each word and the
sentiment associated with it as a priori. On the contrary, a neural network does not have this
inbuilt knowledge. Even though various pre-trained word embedding captures the semantic
relationship among the words, they are usually complicated. Therefore, it is important to find an
efficient way to offer the model necessary knowledge, as priori, as much as possible. To give
the model extra knowledge about sentiment in a simple way, we employ Opinion Lexicon [64]
that has a list of positive and negative sentiment words. We use these lexicons and replace
all the possible positive words with the “positive” tokens and negative words with “negative”
tokens. The words that are not in the Opinion Lexicon will be left as they are. Additionally, to
avoid complex positional embedding, the aspect word is masked with a common token, making
it a Masked Aspect Embedding and the original sentence as Sentence Embedding. Then, we
adopt the Attention-based BiGRU to train both the input to classify the sentiment of the masked

49

aspect word. To evaluate the performance of the proposed methodology, we experiment with
all available restaurant and laptop datasets of the ABSA task [109, 110, 111]. The numerical
results show that the proposed scheme obtains either similar or higher accuracy compared with
the state-of-the-art solutions that use positional embedding and a complex architecture.

3.2.1.1 Preprocessing

As mentioned earlier, the sentiment of aspect word highly depends on the context words sur-
rounding it. Human beings can understand the meaning and the sentiment of context words
that describe the aspect word. That is why human being can easily extract the sentiment of any
particular word. On the contrary, a neural network does not have the knowledge that shows the
semantic and syntactic relationship between words. Word2vec [35] and GloVe embedding [75]
capture the semantic relationship between the words but they are still far from human efficiency.
Hence, we try to reduce the gap between the human knowledge and word embedding by making
the semantically related word as the same token. To simplify the problem so that the neural
networks can solve it better, we replace the sentiment-carrying words with the tag “positive” or
“negative” based on Opinion Lexicon [64] as shown in Fig. 3.17. Opinion Lexicon is a list of
English words with positive or negative sentiment. Such use of external resource in preprocessing
not only integrates sentiment knowledge but also reduces the vocabulary size that is a substantial
concern by itself in NLP [112]. Altogether this process replaces around 550 words with the
token “positive” and “negative”.

Figure 3.17: Replacement of sentiment carrying word with a common tag using Opinion Lexicon.

Another important aspect of the preprocessing is to embed the position information of the
aspect word. Traditional positional embedding considers the relative distance between aspect
words and the context words in a sentence. Such embedding creates a probability distribution
over the sentence with respect to the aspect word. However, such position embedding integrated
with the input sentence is often initialized with trainable weights that increase the complexity of
the model [113]. To mitigate this problem, we propose a simple masking technique that is based
on the pattern learning behavior of the neural network. Usually, an ABSA task has two inputs:
Sentence Embedding carrying the original sentence where position information is integrated
and Aspect Embedding carrying aspect or aspect word. Here, we modify Aspect Embedding as
Masked Aspect Embedding that carries the sentence with the aspect word masked by a common
tag (here we call the common tag as “MASK”). We propose this preprocessing to remove the
positional embedding required by Sentence Embedding. The modification between existing
positional embedding and proposed masking technique is shown in Fig. 3.18, where pos(w1) is
the relative positional encoding of the first word with respect to the aspect word and the total
number of words in the sentence is n. We hypothesize that the masked token is a common token

50

present in every sample at a different location, which creates a positional pattern. Since any
machine learning model tries to capture the repetitive patterns, we hypothesize that the model
will pick the masked token and its necessary context words around it to classify the sentiment.
In all brevity, we propose a model that learns sentiment patterns for the position of the masked
token. The overall preprocessed input is shown in Fig. 3.19.

Figure 3.18: (a) Existing approach of position embedding. (b) Proposed masking technique to
learn pattern for the position.

Figure 3.19: Proposed preprocessed input.

3.2.1.2 Architecture description

The overall architecture of proposed model is shown in Fig. 3.20, which consists 3 sections:
Input Embedding, Bi-GRU, and Attention Layer. As the input embedding has been explained in
the preprosessing part, we will focus on the latter two in the following paragraphs.

RNNs [114] have been the baseline for NLP recently, where the internal states are utilized to
process data sequentially. However, RNNs have certain limitations that lead to the development
of their variants, such as LSTM and GRU. Here, we have explored both LSTM and GRU for
sequencing modeling. Since we aim at developing a very concise and efficient model, we opt
for GRU in our final architecture. The GRU controls the flow of information like the LSTM
unit without employing a memory unit, which makes it more efficient with uncompromised
performance compared to LSTM [115]. In addition, GRU mitigates the problem of vanishing
gradients and gradient explosions in vanilla RNN.

Our proposed model consists of two Attention-based Bi-GRUs: GRU1 for Sentence Em-
bedding and GRU2 for Masked Aspect Embedding. Both of them are identical in architecture

51

Figure 3.20: Proposed attention-based Bi-GRU architecture.

52

that has similar learning pattern with the same hyperparameters. The only difference is how
the preprocessed input data is passed to these two separate Bi-GRUs. We assumed that GRU2

captures the position of the masked token. Additionally, attention layer 2 gives the highest
weightage to the masked token wherever it presents in the sentence. Similarly, GRU1 is supposed
to capture the context features from Sentence Embedding with attention layer 1, assigning higher
weightage to the necessary context words. This hypothesis seems quite similar to how human
being operates to understand the aspect-based sentiment.

Define X = [x1, x2, x3, · · ·, xk] the Sentence Embedding (or Input 1), where k is the padded
length of the sentence embedding to the forward layer of the GRU. There are two kinds of
gates in GRU: the update gate and the reset gate. The update gate decides the amount of past
information that needs to be brought into the current state and how much the new information is
added. On the other hand, the reset gate takes care of how much information about the previous
steps is written into the current candidate state ht. Here, ht is the output of the GRU at time step
t and zt represents the update gate. At a particular time step t, the new state ht is given by:

ht = (1− zt)⊙ ht−1 + zt ⊙ ĥt, (3.9)

where ⊙ is the element-wise multiplication and ĥt is candidate activation. To update zt, we have

zt = σ (Wztxt + Uztht−1 + bzt) . (3.10)

Here, xt is the word of the sentence at time step t that is plugged into the network unit and it is
multiplied with its own weight Wzt . Similarly, ht−1 holds the information of the previous unit
and is multiplied with its own weight Uzt and bzt is the bias associated with update state. The
current state ht can be updated using reset gate rt by

ĥt = tanh (Whxt + rt ⊙ (Uhht) + bh) , (3.11)

where Wh and Uh are weights associated with the candidate activation along with bais bh. At
rt, the candidate state of step t can get the information of input xt and the status of ht−1 of step
t− 1. The update function of rt is given by

rt = σ (Wrtxt + Urtht−1 + brt) , (3.12)

where Wrt and Urt are the weights associated with the reset state and brt is the bias.

The Bi-GRU contains the forward GRU layer (
→
ht) that reads the input sentence from step 0 to t

and the backward GRU (
←
ht).

→
ht =

→
GRU(xt), t ∈ [1, T], (3.13)

←
ht =

←
GRU(xt), t ∈ [T, 1], (3.14)

ht =
[→
ht,
←
ht

]
. (3.15)

As we know that not all the words in the context have equal contribution for sentiment
classification, an attention layer is assigned to prioritize important words in the context. Attention

53

layer 1 is wrapped on top of GRU1 to learn a weight α1
t for each hidden state ht obtained at time

step t. Since there are k inputs in the padded sequences, time step t will be from 1 to k. The
weighting vector for attention layer 1, α1

t = [α1
1, α

1
2, α

1
3, · · ·, α1

k] is calculated based on the output
sequence H = [h1, h2, h3, · · ·, hk]. The attention vector s1 for attention layer 1 is calculated
based on the weighted sum of these hidden states, as:

s1 =
k∑

t=1

(
α1
tht

)
, (3.16)

where the weighted parameter α1
t is calculated by:

α1
t =

exp
(
uT
t uw

)∑
t exp (u

T
t uw)

, (3.17)

and ut = tanh (Wwht + bw). Here Ww and ht are the weight matrices and bw represents the
bias. The parameter uw represents context vector that is different at each step, which is randomly
initialized and learned jointly during the training process.

Similarly, the attention layer 2 is wrapped on top of GRU2 for assigning weightage to the
masked token based on its position. The attention vector s2 for attention layer 2 is given by:

s2 =
k∑

t=1

(
α2
tht

)
. (3.18)

Finally, both of the attention layers are concatenated

s = Concatenate (s1, s2) . (3.19)

The concatenated layer is then sent to a fully connected layer and the softmax function generates
a probability over c class labels.

3.2.1.3 Results

Our experiments are conducted on four publicly available ABSA datasets. Each sample of
every dataset is a single sentence of a product review with aspect word and the corresponding
sentiment label associated. While the datasets are given in the laptop domain by SemEval 2015
and SemEval 2016, they only contain the aspect category without the aspect word. The “null”
aspect terms are excluded from the datasets, and the “dispute” or more than one sentiment labels
are also excluded from the aspect terms in the analysis. The remaining sentences contain at least
one aspect of the word with a {positive, neutral, negative} sentiment tag. The numerical details
of the datasets are shown in Table 3.7.

To evaluate the performance of the proposed model on ABSA datasets, we consider the
following approaches as comparative models. These models are proper baselines for ABSA
and they are as close as possible to this work. Additionally, we have used the models that have
exactly been evaluated in these specific four datasets of ABSA.

• Feature+SVM extracts n-gram as a feature, parse feature, and lexicon features to train the
classifier [116].

54

Dataset
Train Test

Pos Neu Neg Pos Neu Neg

Rest 14 2164 637 807 728 196 196
Lap 14 994 464 870 341 169 128
Rest 15 948 34 269 432 38 257
Rest 16 1289 63 457 474 29 123

Table 3.7: Details of ABSA datasets.

• ContextAvg averages the word embedding to form a context embedding and then it is feed
to the softmax function along with aspect vector [65].

• LSTM uses the last hidden vector information of the LSTM as a sentence representation
for classifying aspect level sentiment [28].

• TD LSTM utilizes two LSTMs to learn the language model from left and right contexts
of the aspect respectively [65].

• ATAE BiLSTM This model is similar to our approach, which is an Attention-based LSTM
architecture with Aspect Embedding. It computes the aspect-specific weighted score of
each word according to the representation of the aspect. The sums of the LSTM hidden
outputs based on the attention weights are utilized to generate the sentence representation
for ABSA classification [66].

• IAN is an Interactive Attention Network model that calculates the attention weights of
the word in sentiment and aspect interactively to generate aspect and sentence representa-
tions [55].

• MemNet integrates the content and the position of the aspect word into deep neural
network [65].

• RAM is a multi-layer architecture where each layer consists of attention-based aggregation
of word features. A GRU cell is used to learn the sentence representation [67].

• Ont+LCR-Rot-hop uses a lexicon domain ontology and a rotatory attention mechanism
to predict the sentiment of the aspect word [117].

• PBAN is a position-aware bidirectional attention network on bidirectional GRU. It also
uses the mean pool and dot product to embed the position information of aspect word into
sentence representation. It performs on par with the state of the art [61].

• PAHT is a position-aware hierarchical transfer model that models the position information
from multiple levels to enhance the ABSA performance by transferring hierarchical knowl-
edge from the resource-rich sentence-level sentiment classification (SSC) dataset [62].

• MTKFN is a Multi-source Textual Knowledge Fusing Network that incorporates knowl-
edge from multiple sources to enhance the performance of ABSA. It uses pre-trained
layers to extract contextual features and predicts the sentiment polarities. Additionally, it
uses the information of conjunctions that captures the relationship between clauses and
provides additional sentiment features [118].

55

• BERTADA-base is further trained on a domain-specific dataset and evaluated on the test
set from the same domain [119].

• XLNetADA-base model is like BERTADA-base except for adopting XLNet [119].

Dataset
Restaurant 14 Laptop 14 Restaurant 15 Restaurant 16

Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

Majority 65.00 26.26 53.45 23.22 54.74 23.58 72.36 29.99
Feature+SVM 80.16 - 70.49 - - - - -
ContextAvg 71.53 58.02 61.59 53.92 73.79 47.43 79.87 55.68
LSTM 74.49 59.32 66.51 59.44 75.40 53.30 80.67 54.53
TD LSTM 78.00 68.43 71.83 68.43 76.39 58.70 82.16 54.21
ATAE BiLSTM 77.63 64.97 69.61 63.04 77.40 54.29 86.01 60.32
IAN 77.35 64.77 69.58 61.08 78.07 51.89 85.44 56.51
MemNet 78.16 65.83 70.33 64.09 77.89 59.52 83.04 57.91
RAM 78.48 68.54 72.08 68.43 79.98 60.57 83.88 62.14
Ont+LCR-Rot-hop - - - - 80.60 - 88.00 -
PBAN 81.16 - 74.12 - - - - -
PAHT 79.29 68.49 75.71 69.55 80.86 60.76 85.81 67.11
MTKFN 79.47 68.08 73.43 69.12 80.67 58.38 88.28 66.15
BERTADA-base 84.92 76.93 77.69 72.60 - - - -
XLNetADA-base 85.84 78.35 79.89 77.78 - - - -
Proposed Model 81.37 72.06 75.39 70.50 80.88 62.48 89.30 66.93

Table 3.8: The state-of-the-art performance of ABSA on four datasets.

The comparison of our proposed model with recent similar studies is shown in Table 3.8.
These state-of-the-art studies are selected for comparison because they mostly depend on po-
sitional embedding as well as complex architecture, which are more relevant to our proposed
model.

Among the baseline models that depend on language modeling, LSTM performs poorly on
all four datasets. Above this lies ATAE BiLSTM that has poor performance considering the fact
that it utilizes the attention mechanism to model the aspect word. However, TD LSTM performs
better than the two models mentioned above because it considers both the left and the right
context as an aspect rather than the entire sentence. Similarly, MemNet performs better than IAN
but it is not as good as RAM, because it does not use multiple attention mechanisms. Moreover,
PAHT and MTKFN that utilize the hierarchical transfer model and external knowledge fusion
respectively exhibit quite similar results as both of them are position-aware models. However,
our proposed model surpasses both of these recent models with a significant margin using a
much simpler architecture.

Among PBAN, PAHT and MTKFN, PBAN has higher accuracy than PAHT and MTKFN,
which is a quite similar model to our proposed architecture. Hence, we focus on PBAN more
than other listed models for comparison. PBAN that adopts two BiGRUs still falls behind in
performance compared with our model. As shown in Table 3.8, PBAN achieves 81.16% accuracy
on restaurant 14 and 74.12% on laptop 14 dataset. However, it uses traditional embedding
with a more complex model than ours. On the other hand, by employing the Opinion Lexicon
and masked aspect embedding, our model gives 81.37% and 75.39% accuracy on restaurant
14 and laptop 14 datasets respectively. Additionally, the macro-F1 score also outperforms the

56

above-mentioned models with a significant margin except for the restaurant 16 dataset where the
macro-F1 score is slightly below PAHT.

Figure 3.21: Visualization of two typical examples. The red color represents the attentive weight
of the word. A deeper color indicates a larger weight value.

To have a detailed insight into why our proposed model performs better than the baselines
with a straightforward architecture, we sample two examples from the restaurant 16 dataset
and visualize attention heatmaps based on the trained model. Here we have two inputs for two
separate BiGRUs: one being the sentence itself and the other being the masked sentence. As
we have already discussed, the aspect words are masked with a common token, say “MASK”.
From Fig. 3.21, we can see that the sentiment of the aspect word “food” is classified as positive
sentiment from our model. The original sentence is fed to GRU1 that has an attention layer 1
and the Masked sentence is fed to GRU2 that has an attention layer 2. Here, attention layer 1
captures the context words throughout the sentence whereas attention layer 2 pays high attention
to the masked token with weight narrowing down to important context words as shown in
Fig. 3.21. In the first example, attention layer 2 shifts the attention weightage towards the masked
token “food” (the first half of the sentence) that highly depends on the context “incredible” for
positive sentiment. For the second example, attention layer 2 shifts the attention weightage
towards the masked token “lunch” (the second half of the sentence) whose sentiment depends
on context “inconsistent” for negative sentiment. This is a clear validation of our hypothesis
that the masked token will hold the position information without using any additional trainable
positional embedding. In all brevity, attention layer 1 assigns weightage to words in the sentence,
and attention layer 2 narrows down the weightage from these selected words to important context
words, carrying sentiment of the aspect word.

3.2.2 Enhancing Attention’s Explanation Using TM

Based on the study so far, we have observed that the TM-based models are interpretable with
decent performance. On the other hand, DNN-based models are better in terms of accuracy but
their explainability based on attention weights tends to differ with distinct attention distribution.
This is due to the fact that language representation layers are initialized by pre-trained word
embedding that is not context-dependent. Such a lack of context-dependent knowledge in the

57

initial layer makes it difficult for the model to concentrate on the important aspects of input.
Usually, it does not impact the performance of the model significantly, but the explainability
differs from human understanding. Hence, we propose an ensemble method to use logic-based
information from the TM to embed it into the initial representation layer in the neural network to
enhance the model in terms of explainability. We obtain the global clause score for each word in
the vocabulary and feed it into the neural network layer as context-dependent information.

The attention mechanism is a prominent technique among current explainability approaches
that identify essential sections of the input for the prediction job by offering a distribution
across attended-to-input units [58]. Many NLP tasks, such as text categorization, question
answering, and entity identification, have shown outstanding results using attention-based
models [58, 120, 121]. In particular, in many NLP systems, the self-attention mechanism that
underpins the Transformer design has played a key role [30, 122]. Despite this, recent research
has revealed that learned attention weights are frequently unrelated to the relevance of input
components as judged by various explainability approaches [123], and that alternative attention
distributions can provide identical predictions [124, 4].

One efficient way to deal with the above-mentioned problem is to use prerequisite knowledge
to enhance the input layer for better interpretation. Integrating human rationales as supplementary
supervision information for attention learning is a promising way to enhance the explainability
of attention-based models. Human rationales have previously been found to be useful inputs for
increasing model performance and discovering explainable input in model prediction [125, 126].
However, obtaining such human rationales is an expensive and time-consuming process. Hence,
to make it easier and more efficient, we use a logic-based model TM that mimics human-level
understanding to generate prerequisite information to initialize the input layer of the neural
network. Since TM can be explained by logic and rules, the information it provides can be easily
explained to make the attention layer focus on important input tokens.

3.2.2.1 Clause Score from TM Architecture

In regards to NLP, TM heavily relies on the Boolean BOW given by X = [x1, x2, x3, . . . , xn].
Let l be the number of clauses that represent each class of the TM, covering q classes altogether.
Then, the overall learning problem is solved using l × q clauses. Each clause Cj

i , 1 ≤ j ≤ q,
1 ≤ i ≤ l of the TM is given by :

Cj
i =

∧
k∈Iji

xk

 ∧

∧
k∈Īji

¬xk

 , (3.20)

where Iji and Īji are non-overlapping subgroup of the input variable indices, I ij, Ī ij ⊆ {1, . . . ,m},
I ij ∩ Ī ij = ∅. The subgroup decides that which of the input variables to participate in the clause,
and whether they are in the original form or the negated. The indices of input features in I ij
represent the literals that are included as original form of the literals, while the indices of input
features in Ī ij correspond to the negated ones. Among the q clauses of each class, clauses that are
indexed with odd number are assigned positive polarity (+) whereas those with even indexed are
assigned negative polarity (−). The clauses with positive polarity vote for the true target class
and those with negative polarity vote against it. A summation operator aggregates the votes by

58

subtracting the total number of negative votes from positive votes, as shown in Eq. (3.21).

f j(X) = Σl−1
i=1,3,...C

j
i (X)− Σl

i=2,4,...C
j
i (X). (3.21)

For q number of classes, the predicted output y is given by the argmax operator which
classifies the input features based on the highest sum of votes obtained, as shown in Eq. (3.22).

ŷ = argmaxj
(
f j(X)

)
. (3.22)

Once the model is trained with a particular dataset, we can explore the clauses that hold
information of combination of literals in propositional form. Such information is humanly inter-
pretable and can be used for downstream applications of NLP. Here, we explore the weightage of
each word in the model. We pass each word in the vocabulary into the TM and obtain the clause
score. The clause score is calculated by:

SCxk
= |fκ=tp(Xxk=1)− Σfκ=fp(Xxk=1)|. (3.23)

Here tp refers to true prediction, fp refers to false prediction, |.| refers to the absolute value,
and k = 1, 2, . . . , n, where n is the number of vocabularies. We then create the input map
for each input sentence with the score obtained for each word, which will be fed to the neural
network’s initial embedding layer.

3.2.2.2 Attention-based Neural Network

This subsection extends the attention-based neural network for text classification, where we use
conventional Bi-GRU as the language representation layer and attention on top of it.

Because of its linked hidden layers, where the internal states are used to process data in a
sequential fashion, RNNs [114] have lately become the standard for NLP. RNNs, on the other
hand, have several drawbacks that have led to the creation of versions like LSTM and GRU.
The GRU, like the LSTM unit, regulates the flow of information without using a memory unit,
making it more efficient with near-lossless performance [127]. GRU also overcomes the issue of
vanishing gradients and gradient explosions in vanilla RNN. Our selected model consists of a
Bi-GRU layer on top of embedding layer initialized with GloVe embedding. This layer consists
of an attention layer on top of Bi-GRU. The overall architecture of proposed model is shown in
Fig. 3.22.

Consider the sentence “This is a wonderful movie”, which is fed to the embedding layer
initialized by GloVe embedding as shown in Fig. 3.22. On the other hand, we obtain the clause
score for each word in the sentence and feed to the embedding layer to match the dimension
of input sentence embedding. Then both the embedding layer is passed to multiplication layer,
where both are multiplied element wise. The output of the multiplication layer is then fed to
the Bi-GRU having multiple hidden layers. Let us assume that the input to Bi-GRU is given by
X = [x1, x2, x3, . . . , xk] where k is the padded length of the input sentence. This information is
passed to Bi-GRU layer which is explained in Section 3.2.1.2. However, in this case, we use a
single structure Bi-GRU instead of two Bi-GRUs.

59

Figure 3.22: The two-action TA and its transition in TM.

3.2.2.3 Results

Here, we demonstrate the experiments and the results on the proposed model for enhancing the
explanation of attention layer in text classification. We use two sentiment classification datasets
for evaluation. They are:

• MR is a movie review dataset for binary sentiment classification with just one sentence
per review [80]. There are 5331 positive reviews and 5331 critical reviews in the corpus.
In this study, we used a training/test split from [81] (https://github.com/mnqu/
PTE/tree/master/data/mr).

• Reuters The Reuters 21,578 dataset has two subsets: R52 and R83 (all-terms version). R8
is divided into eight categories, including 5485 training and 2189 exam papers. R52 is
divided into 52 categories and 6532 training and 2568 test papers.

Here, we explore the proposed model’s explainability by visualizing the respective attention

60

https://github.com/mnqu/PTE/tree/master/data/mr
https://github.com/mnqu/PTE/tree/master/data/mr

weights. The attention weight usually gives the impact of each individual feature on a particular
prediction. However, such weight usually indicates the relationship between the input and the
output, this method of interpreting the model can be beneficial for the system to understand
the impact of each feature. As neural networks are already established BlackBox models, one
can instead apply this interpretation to generate explainability for understanding the context of
prediction. We define interpretation of the model as the weights obtained from the attention layer,
and explainability as a use-case of interpretation to design the reasoning for a particular prediction
that is easily understandable to humans. For ease of illustration, we visualize the attention weight
of the Bi-GRU model and the attention weight of the Bi-GRU model initialized with TM’s word
score. We use the red color gradient to demonstrate the weight of each input word in the context.
Dark color represents higher weight, with light color representing lower weight. As we can see
from Fig. 3.23, only using Bi-GRU, the model recognizes mostly important words for predicting
correct sentiment class. However, it is not perfect at the human level. However, Fig. 3.24 shows
the visualization of attention weight using Bi-GRU and TM’s score.

Here we can see that the model focuses on more significant words than the previous model.
For instance, in the first example, the later model captures “look”, “away” with higher weight,
which is an important context for negative sentiment than “directing” and “attempt”. This is more
clearly seen in the third sample as the first model focus on “easily”, “best”, and “film” however
our proposed model shifts the higher weightage to “best”, “Korean”, “film” for predicting the
positive sentiment. One of the most peculiar cases where there are ambiguities in the context
consisting of both positive and negative sentiment words is shown in the last example. Here
using only Bi-GRU, the model captures “forgettable”, “rip”, and “work” as high-impact words.
However, it does not give high weightage to the word “cheerful” which is also a sentiment
carrying word. However, using our proposed model, the weightage changes drastically, and
the model assigns higher weightage to “forgettable”, “cheerful”, “but”, and “earlier”. This
makes more sense to human understanding because the context has the word “cheerful” and it is
contradicted with the word “but” which eventually leads to a negative sentiment carrying word
“forgettable” thereby making the whole context negative.

Figure 3.23: Visualization of attention weights with Bi-GRU only. Dark red to light red color
represents the color gradients based on the attention weights in descending order.

61

Figure 3.24: Visualization of attention weights with Bi-GRU and TM Score. Dark red to light
red color represents the color gradients based on the attention weights in descending order.

3.3 Summary

In this chapter, we presented the various architectures and algorithms proposed for interpretable
NLP. We presented the methods for interpretable NLP models for different NLP problems. The
first section of this chapter consisted of the detailed framework of interpretable NLP models
using TM. We demonstrated a technique based on the frequency of the literals in the clause
to interpret an NLP model using TM on the WSD task. The outcome of this task showed that
despite the huge vocabulary size, how the frequency of words appearing in the clause helps to
understand the concept behind the prediction made by TM. We then extended this task further
to non-traditional text classification (i.e., position-dependent text classification) for the ABSA
task. There we designed a feature extraction technique where the position information was
encoded into Boolean BOW so that TM can identify the context for the target word. Since
TM suffered from lower accuracy compared with the state-of-the-art DNN models due to the
fact that it cannot use the pre-trained word representation, we proposed feature augmentation
to append a similar feature based on GloVe embedding in order to improve the performance.
The result demonstrated that the model achieves significantly higher accuracy compared with
vanilla TM. Now since most of the boxes were covered for a rule-based interpretable NLP model,
there existed a serious problem of robustness of TM on spurious correlations. Hence we did
an intensive analysis to understand the concept of the word involved in the classification. We
discovered that the hyper-parameter called specificity (s) decides the probability of words and
their negation to be included or excluded in the clause. Since TM is a transparent model, we
visualized the learning way of TM based on the parameter s. We then proposed a novel way of
using s in order to minimize the impact of spurious correlations in text classification.

In addition to TM-based approaches, we solved a major problem in text classification for
easier interpretation of the model using the DNN-based attention model. Position-dependent text
classification heavily relies on positional embedding in the initial layer of DNN which creates
ambiguity in explaining the attention weights. This is because attention weights are directed not
only to input rationales but also to positional embedding associated with them. In order to get rid
of positional embedding, we designed a masking technique using two Bi-GRUs models each of
which learns the representation of the original sentence and masked sentence. The result showed
that the proposed model performs better than the positional embedding and the relationship

62

between attention weights to input rationales is no longer ambiguous. At last, we designed an
ensemble architecture using DNN and TM to compensate for their limitation to have a trade-off
between accuracy and interpretability. Since there are numerous studies showing that attention
weights are not reliable, we propose a novel way of assigning prerequisite information to the
DNN model using the clause score of each word from TM. This helps the model to understand
the underneath concept of data distribution and helps the attention layer to converge towards the
intended pattern in various distributions.

All the contributions give solutions to the research questions mentioned earlier in the thesis.
Combining each and every technique and model gives a powerful interpretable architecture
and algorithms for NLP that outperform existing solutions in terms of performance and/or
interpretability, and in some cases, set up a completely new paradigm.

63

Chapter 4

Conclusions and Future Work

In this thesis, Interpretable Architectures and Algorithms for NLP are proposed, balancing the
interpretability and performance of NLP applications. We divide the thesis into two parts. The
first part deals with interpretable NLP models using TM and the second one focuses on the
interpretation of the NLP model using DNN. We then extend this later model to design an
ensemble approach to integrate information of TM into DNN as a prerequisite representation.

4.1 Conclusions to the Research Questions

In this section, we conclude the findings of our proposed methods in accordance to the research
questions in Chapter 1.

Research Question 1: We design a novel technique to interpret populated clauses using
the frequency of the literals. We used the WSD task as the dataset where the model has to
classify the sense of a specific word given a particular context. Due to a large vocabulary in
the NLP domain, clauses are over-populated with the literal and the conventional method of
analyzing propositional logic seems to be a difficult way to interpret the model. Hence we design
a frequency-based interpretation where we count the occurrence of each literal in the clause and
filter the interpretability based on user requirements. The proposed model not only provides the
interpretability for NLP but also achieves the state-of-the-art accuracy on WSD task.

We extend the traditional text classification to position-dependent text classification with
a standard evaluation framework known as the ABSA task. We map the position as well as
additional Sentiwordnet feature into Boolean BOW. The extracted features, when applied on TM,
achieve accuracy on par with other position-dependent interpretable model on selected ABSA
datasets of domain “Restaurant” and “Laptop”.

Research Question 2: TM is an interpretable model that operates on Boolean data, which
restricts TM to use any pre-trained information such as word2vec and Glove embedding. For this
reason, the performance of TM usually falls short of DNN models that are initialized by such
word embedding. To boost the performance of TM, we adopt feature extraction using similar
words from pre-trained word embedding to initialize TM’s BOW. Experiments show that the

65

proposed model achieves up to a 4% accuracy boost among the selected datasets.

Research Question 3: The state-of-the-art NLP models have raised the bar for excellent
performance on a variety of tasks in recent years. However, concerns are rising over their primi-
tive sensitivity to distribution biases that reside in the training and testing data. This issue hugely
impacts the performance of the models when exposed to out-of-distribution and counterfactual
data. Here, we employ TM that learns both simple and complex correlations by ANDing features
and their negations. Specifically, we explore how non-negated reasoning can be more prone to
distribution biases than negated reasoning. Experiments demonstrate that the negated clauses are
robust to spurious correlations and outperform Naive Bayes, SVM, and Bi-LSTM by up to 20%,
and ELMo by almost 6% on counterfactual test data.

Research Question 4: The interpretability of non-tradition text classification (ABSA)
comes with the cost of performance in TM. This task heavily relies on positional embedding that
creates ambiguity in interpreting the attention weights. Here we design a masking technique to
remove positional embedding and maintain the performance. The proposed model also offers a
direct relationship between attention weights and input rationales.

Research Question 5: The state-of-the-art NLP models are highly dominated by DNN-
based models such as LSTM/GRUs and transformers. However, their BlackBox nature makes the
interpretation ambiguous. On the other hand, TM offers an easy logic-based interpretation of the
model but it comes with performance loss. The trade-off between accuracy and interpretability is
one of the main concerns of this study. There has been an immense attempt of extracting a logical
explanation from the attention layer of DNN. However, the change in attention weights based
on various scenarios makes it arguably tough to establish a trustful model. Hence to mitigate
the limitation of both models, we use the interpretable information from TM and integrate it
into NN so that the model has prerequisite information about the distribution of the task thereby
generating sensible attention weights. The experiments shows that the proposed ensemble
method retains or outperforms the relatable state-of-art models thereby enhancing the attention
weights towards more sensible input rationales.

4.2 Interpretable Text Classification Using TM

4.2.1 Bag-of-Words (BOW) based Text Classification

We have proposed a sense categorization approach based on TM. Although there are various
methods for sense classification on a CoarseWSD-balanced dataset with good accuracy, many
machine learning algorithms fail to provide a human interpretation that can explain the procedure
of a particular classification. To overcome this issue, we present a TM-based sense classifier that
learns the formulae from text corpus utilizing conjunctive clauses to demonstrate a particular
feature of each category. Numerical results indicate that the TM-based approach is human-
interpretable and it achieves a competitive accuracy, showing its potential for further WSD
studies. In conclusion, we believe that the novel TM-based approach can have a significant
impact on sense identification that is a very important factor in a chatbot or other WSD tasks.

66

4.2.2 Position Dependent Text Classification

Here, we aim to reduce the gap between the interpretability and the accuracy of position-
dependent text classification known as ABSA by employing the TM. Our proposed model
embeds the aspect-based inputs into binary form for classifying the sentiment of a particular
word in a sentence. Such binary representations are then fed to a TM architecture where the
learning process is transparent, which give a clear picture of what drives the TM to learn the
particular sentiment for a given input. Additionally, we show the involvement of words carrying
the sentiment for the aspect words in a case study. In short, the proposed model successfully
provides a human-interpretable learning approach on ABSA task with comparable accuracy.

4.2.3 Enhancing Performance of TM

We aim to enhance the performance of TMs by introducing a novel way to exploit distributed
feature representation. Given that a TM relies on Bag-of-words (BOW), it is not possible to
introduce pre-trained word representation into a TM directly without sacrificing the interpretabil-
ity of the model. To address this intertwined challenge, we extended each word feature by
using cosine similarity on the distributed word representation. We proposed two techniques for
feature extension: (1) using the k nearest words in embedding space and (2) including words
within a given cosine angle (θ). Through this enhancement, the TM BOW can be boosted with
pre-trained world knowledge in a simple yet effective way. Our experiment results showed that
the enhanced TM not only achieves competitive accuracy compared with the state-of-the-art
solutions but also outperforms some of the sophisticated DNN models. In addition, our BOW
boosting also improves the interpretability of the model by increasing the scope of each clause,
and semantically relating more samples. We thus believe that our proposed approach significantly
enhances the TM in the accuracy/interpretability continuum, establishing a new standard in the
field of explainable NLP.

4.2.4 Robust Text Classification against Spurious Correlations

Here, we employ TM to design a robust text classification against spurious correlations. TM
learns the pattern using a set of clauses that are in the form of propositional logic. Such
propositional logic is a combination of features in either non-negated or negated form. Since
the propositional logic is human interpretable, it is easy to extract rule-based reasoning from
TM. Our methods demonstrate that such a rule can be controlled or fine-tuned by modifying the
hyper-parameter specificity s. We show that by keeping the value of s small, we can filter the
clause from non-monotone to monotone where a majority of features are in the negated form
thereby removing spurious correlations and forcing the model to rely on genuine correlations.
Experiment results have shown that the proposed s-controlled TM outperforms various existing
models on counterfactual test data. In addition, unlike DNNs, the human-level interpretation
obtained from the rule-based reasoning of TM gives a complete understanding of how the model
achieves its robustness.

67

4.3 Interpretable Text Classification Using Neural Network

4.3.1 Position Dependent Text Classification without Positional Embed-
ding

In this part, we propose an efficient preprocessing scheme with an attention-based GRU model for
aspect-based sentiment analysis. We first explore sentiment knowledge called Opinion Lexicon
that is a list of positive, neutral, and negative sentiment words. In more detail, we replaced the
words in ABSA dataset with a common tag, such as “positive” for positive sentiment words.
This external input helps to bridge the gap from semantically related words to a certain extent
and reduces the task’s vocabulary. Since the ABSA is a position-dependent task, it requires
the information of position along with sentence embedding or aspect embedding. The extra
trainable weights for position information increase the complexity of the model. To reduce the
complexity, we proposed a masking technique that masks the aspect word in the sentence with a
common token “MASK”. This masked embedding is separately sent to the model along with
the sentence embedding. Experimentally, we have shown that the proposed scheme outperforms
several position-aware methods with very straightforward attention-based BiGRUs architecture.

4.3.2 Enhancing Attention’s Explanation Using TM

Recently, attention weights have been a great tool for visualizing the weight of input rationales in
the model. However, their weight sometimes gives higher weightage to unwanted tokens that do
not make sense to humans. This lead to the requirement of human-annotated rationales that are
embedded into the models. Even if such human annotators are not a very extensive task to obtain
while annotating new datasets, the problems come with annotating human rationales to existing
datasets. It takes more time and is costly to re-annotate human rationales for interpretability. To
solve this problem, we propose an alternative approach to obtain human interpretable rationales
using TM. Since TM can be explained via logical rules, it provides human-level interpretation
and is considered a prerequisite annotation of input rationales. The proposed model shows
that embedding such information in attention-based models not only increases the accuracy
but also enhances the weightage of the attention layer for each input rationale thereby making
the explanation more sensible to humans. The visualization shows that the proposed model is
capable of capturing the ambiguity of the context more efficiently than traditional models.

4.4 Future Works

The models proposed in this thesis pertain to various NLP tasks in TM separately. Even though
these tasks are combined progressively, each of these tasks is independent in structure, which
also applies to the models proposed using DNN in the second part of the thesis. However, to
design a complete interpretable model for NLP, we would like to combine all these disjoints
models into a large NLP framework that can apply to any type of dataset.

We would like to work on evaluating the explainability provided by TM and the ensemble
model with human explainability. There are huge numbers of datasets that come with human
rationales collected while labeling. Hence, there is a necessity of designing a TM model for NLP

68

that has significantly few propositional logic along with its evaluation with human rationales.
However, reducing the propositional logic to a level where the human can easily comprehend the
explanation is a challenging task because there is limited control over the size of propositional
logic that TM creates. We would also like to design a weak supervision text classification using
TM. The construction of a dataset is still a huge task that takes significant time and cost. Since
TM is trained using a sample-wise method unlike DNN, it can be possible to design a text
classification using weakly labeled data.

In addition to the above mentioned aspects, our ensemble approach in the second part of the
thesis is only evaluated in one type of dataset. Hence, we would like to work on extending it to
some sophisticated NLP tasks such as information retrieval, contextual text classification, and
question answering. We believe that the interpretable information from TM can be helpful to
attention-based DNN to enhance the focus on the respective part of the input representation.

69

Bibliography

[1] O.-C. Granmo, “The Tsetlin machine - a game theoretic bandit driven approach to optimal
pattern recognition with propositional logic,” ArXiv, vol. abs/1804.01508, 2018.

[2] K. Clark, U. Khandelwal, O. Levy, and C. D. Manning, “What does BERT look at? An
analysis of BERT’s attention,” in Proceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP, (Florence, Italy), pp. 276–286, Asso-
ciation for Computational Linguistics, 2019.

[3] S. Serrano and N. A. Smith, “Is attention interpretable?,” in ACL, (Florence, Italy), pp. 2931–
2951, ACL, 2019.

[4] S. Wiegreffe and Y. Pinter, “Attention is not not explanation,” in Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Nat-
ural Language Processing (EMNLP-IJCNLP), (Hong Kong, China), pp. 11–20, Association
for Computational Linguistics, Nov. 2019.

[5] G. Boolos, “The logic of provability,” 1993.

[6] J. W. Cain, “Mathematical models in the sciences,” 2014.

[7] F. Doshi-Velez and B. Kim, “Towards a rigorous science of interpretable machine learning,”
arXiv: Machine Learning, 2017.

[8] E. Tjoa and C. Guan, “A survey on explainable artificial intelligence (XAI): Toward medical
XAI,” IEEE Transactions on Neural Networks and Learning Systems, vol. 32, pp. 4793–4813,
2021.

[9] E. L. Zanutto, “A comparison of propensity score and linear regression analysis of complex
survey data,” Journal of Data Science, 2021.

[10] P. L. Bartlett, P. M. Long, G. Lugosi, and A. Tsigler, “Benign overfitting in linear regression,”
Proceedings of the National Academy of Sciences, vol. 117, pp. 30063 – 30070, 2020.

[11] D. LeJeune, H. Javadi, and R. Baraniuk, “The implicit regularization of ordinary least
squares ensembles,” in AISTATS, 2020.

[12] H. J. Kan, H. Kharrazi, H.-Y. Chang, D. P. Bodycombe, K. W. Lemke, and J. P. Weiner,
“Exploring the use of machine learning for risk adjustment: A comparison of standard and
penalized linear regression models in predicting health care costs in older adults,” PLoS
ONE, vol. 14, 2019.

[13] E. J. C. Priego, A. V. Olivares-Nadal, and P. R. Cobo, “Integer constraints for enhancing
interpretability in linear regression,” Sort-statistics and Operations Research Transactions,
vol. 44, pp. 69–78, 2020.

[14] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1, pp. 81–106, 2004.

71

[15] J. J. Lin, C. Zhong, D. Hu, C. Rudin, and M. I. Seltzer, “Generalized and scalable optimal
sparse decision trees,” in ICML, 2020.

[16] M. Moshkovitz, Y.-Y. Yang, and K. Chaudhuri, “Connecting interpretability and robustness
in decision trees through separation,” in ICML, 2021.

[17] Y. D. Dhebar and K. Deb, “Interpretable rule discovery through bilevel optimization of
split-rules of nonlinear decision trees for classification problems,” IEEE Transactions on
Cybernetics, vol. 51, pp. 5573–5584, 2021.

[18] A. McCallum and K. Nigam, “A comparison of event models for naive Bayes text classifi-
cation,” in AAAI, 1998.

[19] M. Loor and G. D. Tré, “Contextualizing naive Bayes predictions,” Information Processing
and Management of Uncertainty in Knowledge-Based Systems, vol. 1239, pp. 814 – 827,
2020.

[20] B. Bhattarai., O. Granmo., and L. Jiao., “Measuring the novelty of natural language text
using the conjunctive clauses of a Tsetlin machine text classifier,” in Proceedings of the
13th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,,
pp. 410–417, INSTICC, SciTePress, 2021.

[21] K. D. Abeyrathna, O.-C. Granmo, X. Zhang, L. Jiao, and M. Goodwin, “The regression
Tsetlin machine: A novel approach to interpretable nonlinear regression,” Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
vol. 378, 2019.

[22] R. Saha, O.-C. Granmo, and M. Goodwin, “Mining interpretable rules for sentiment and
semantic relation analysis using Tsetlin machines,” in Artificial Intelligence XXXVII, (Cham),
pp. 67–78, Springer International Publishing, 2020.

[23] I. J. Goodfellow, Y. Bengio, and A. C. Courville, “Deep learning,” Nature, vol. 521,
pp. 436–444, 2015.

[24] W. Wang, L. Wang, R. Wang, Z. Wang, and A. Ye, “Towards a robust deep neural network
in texts: A survey,” arXiv: Computation and Language, 2019.

[25] A. Albarghouthi, “Introduction to neural network verification,” ArXiv, vol. abs/2109.10317,
2021.

[26] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation functions,” ArXiv,
vol. abs/1710.05941, 2018.

[27] J. L. Elman, “Finding structure in time,” Cogn. Sci., vol. 14, pp. 179–211, 1990.

[28] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9,
pp. 1735–1780, 1997.

72

[29] A. Graves, N. Jaitly, and A. rahman Mohamed, “Hybrid speech recognition with deep
bidirectional LSTM,” 2013 IEEE Workshop on Automatic Speech Recognition and Under-
standing, pp. 273–278, 2013.

[30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and
I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing
Systems (NIPS), vol. 30, (California, USA), Curran Associates, Inc., 2017.

[31] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2016.

[32] J. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” ArXiv, vol. abs/1607.06450,
2016.

[33] N. A. Smith, “Linguistic structure prediction,” in Synthesis Lectures on Human Language
Technologies, 2011.

[34] D. Yan, K. Li, S. Gu, and L. Yang, “Network-based bag-of-words model for text classifica-
tion,” IEEE Access, vol. 8, pp. 82641–82652, 2020.

[35] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed representa-
tions of words and phrases and their compositionality,” in Advances in Neural Information
Processing Systems (NIPS), Nevada, USA, vol. 26, pp. 3111–3119, Curran Associates, Inc.,
2013.

[36] A. Bermingham and A. Smeaton, “On using Twitter to monitor political sentiment and
predict election results,” in Proceedings of the Workshop on Sentiment Analysis where AI
meets Psychology (SAAIP 2011), (Chiang Mai, Thailand), pp. 2–10, Asian Federation of
Natural Language Processing, 2011.

[37] E. Altszyler, M. Sigman, and D. F. Slezak, “Comparative study of LSA vs word2vec
embeddings in small corpora: A case study in dreams database,” ArXiv, vol. abs/1610.01520,
2016.

[38] M. Naili, A. H. Chaı̈bi, and H. H. B. Ghézala, “Comparative study of word embedding
methods in topic segmentation,” in KES, 2017.

[39] Á. Elekes, A. Englhardt, M. Schäler, and K. Böhm, “Toward meaningful notions of
similarity in NLP embedding models,” International Journal on Digital Libraries, vol. 21,
pp. 109–128, 2018.

[40] C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard, and D. McClosky, “The Stanford
CoreNLP natural language processing toolkit,” in Proceedings of 52nd Annual Meeting of the
Association for Computational Linguistics: System Demonstrations, (Baltimore, Maryland),
pp. 55–60, Association for Computational Linguistics, 2014.

[41] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word vectors with subword
information,” Transactions of the Association for Computational Linguistics, vol. 5, pp. 135–
146, 2017.

73

[42] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer,
“Deep contextualized word representations,” in Proceedings of the 2018 Conference of
the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers), (New Orleans, Louisiana), pp. 2227–2237,
Association for Computational Linguistics, 2018.

[43] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirec-
tional transformers for language understanding,” in Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), (Minneapolis, Minnesota),
pp. 4171–4186, Association for Computational Linguistics, 2019.

[44] Y. Zhu, R. Kiros, R. S. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba, and S. Fidler,
“Aligning books and movies: Towards story-like visual explanations by watching movies and
reading books,” 2015 IEEE International Conference on Computer Vision (ICCV), pp. 19–27,
2015.

[45] T. Linzen, E. Dupoux, and Y. Goldberg, “Assessing the ability of LSTMs to learn syntax-
sensitive dependencies,” Transactions of the Association for Computational Linguistics,
vol. 4, pp. 521–535, 2016.

[46] Y. Adi, E. Kermany, Y. Belinkov, O. Lavi, and Y. Goldberg, “Fine-grained analysis of
sentence embeddings using auxiliary prediction tasks,” ArXiv, vol. abs/1608.04207, 2017.

[47] E. Agirre and P. Edmonds, “Word sense disambiguation: Algorithms and applications,” in
Springer, Dordrecht, 2007.

[48] A. Raganato, J. Camacho-Collados, and R. Navigli, “Word sense disambiguation: A unified
evaluation framework and empirical comparison,” in Proceedings of the 15th Conference of
the European Chapter of the Association for Computational Linguistics: Volume 1, Long
Papers, (Valencia, Spain), pp. 99–110, Association for Computational Linguistics, 2017.

[49] O. Lopez de Lacalle and E. Agirre, “A methodology for word sense disambiguation at
90% based on large-scale CrowdSourcing,” in Proceedings of the Fourth Joint Conference
on Lexical and Computational Semantics, (Denver, Colorado), pp. 61–70, Association for
Computational Linguistics, 2015.

[50] K. Liao, D. Ye, and Y. Xi, “Research on enterprise text knowledge classification based on
knowledge schema,” in 2010 2nd IEEE International Conference on Information Manage-
ment and Engineering, pp. 452–456, April 2010.

[51] Y. Wang, L. Wang, M. Rastegar-Mojarad, S. Moon, F. Shen, N. Afzal, S. Liu, Y. Zeng,
S. Mehrabi, S. Sohn, and H. Liu, “Clinical information extraction applications: A literature
review,” Journal of Biomedical Informatics, vol. 77, pp. 34 – 49, 2018.

[52] C. Rudin, “Stop explaining black box machine learning models for high stakes decisions
and use interpretable models instead,” Nature Machine Intelligence, vol. 1, pp. 206–215,
2018.

74

[53] L. Zhang and B. Liu, Sentiment Analysis and Opinion Mining, pp. 1152–1161. Boston,
MA: Springer US, 2017.

[54] M. Pontiki, D. Galanis, J. Pavlopoulos, H. Papageorgiou, I. Androutsopoulos, and S. Man-
andhar, “SemEval-2014 task 4: Aspect based sentiment analysis,” in International Workshop
on Semantic Evaluation (SemEval 2014), (Dublin, Ireland), pp. 27–35, ACL, 2014.

[55] D. Ma, S. Li, X. Zhang, and H. Wang, “Interactive attention networks for aspect-level
sentiment classification,” in IJCAI, (Melbourne, Australia), pp. 4068–4074, 2017.

[56] H. H. Do, P. Prasad, A. Maag, and A. Alsadoon, “Deep learning for aspect-based sentiment
analysis: A comparative review,” Expert Systems with Applications, vol. 118, pp. 272–299,
2019.

[57] W. Samek, G. Montavon, A. Vedaldi, L. Hansen, and K. Müller, Explainable AI: Interpret-
ing, Explaining and Visualizing Deep Learning. Springer, 2019.

[58] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to
align and translate,” in ICLR, (California, USA), 2015.

[59] G. Brunner, Y. Liu, D. Pascual, O. Richter, M. Ciaramita, and R. Wattenhofer, “On
identifiability in transformers,” in ICLR, (Addis Ababa, Ethiopia), 2020.

[60] S. Vashishth, S. Upadhyay, G. S. Tomar, and M. Faruqui, “Attention interpretability across
NLP tasks,” arXiv, vol. 1909.11218, 2019.

[61] S. Gu, L. Zhang, Y. Hou, and Y. Song, “A position-aware bidirectional attention network for
aspect-level sentiment analysis,” in COLING, (Santa Fe, New Mexico, USA), pp. 774–784,
ACL, 2018.

[62] J. Zhou, Q. Chen, X. Huang, Q. Hu, and L. He, “Position-aware hierarchical transfer model
for aspect-level sentiment classification,” Information Sciences, vol. 513, pp. 1–16, 2020.

[63] M. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer, “Deep
contextualized word representations,” in NAACL, (New Orleans, Louisiana), pp. 2227–2237,
ACL, 2018.

[64] M. Hu and B. Liu, “Mining and summarizing customer reviews,” in ACM SIGKDD, (New
York, NY, USA), p. 168–177, ACM, 2004.

[65] D. Tang, B. Qin, and T. Liu, “Aspect level sentiment classification with deep memory
network,” in EMNLP, (Austin, Texas), pp. 214–224, ACL, 2016.

[66] Y. Wang, M. Huang, X. Zhu, and L. Zhao, “Attention-based LSTM for aspect-level senti-
ment classification,” in EMNLP, (Austin, Texas), pp. 606–615, ACL, 2016.

[67] P. Chen, Z. Sun, L. Bing, and W. Yang, “Recurrent attention network on memory for aspect
sentiment analysis,” in EMNLP, (Copenhagen, Denmark), pp. 452–461, ACL, 2017.

75

[68] R. He, W. S. Lee, H. T. Ng, and D. Dahlmeier, “Exploiting document knowledge for
aspect-level sentiment classification,” in ACL, (Melbourne, Australia), pp. 579–585, ACL,
2018.

[69] Z. Lei, Y. Yang, M. Yang, W. Zhao, J. Guo, and Y. Liu, “A human-like semantic cognition
network for aspect-level sentiment classification,” in AAAI, (Hawaii, USA), 2019.

[70] X. Li, L. Bing, W. Lam, and B. Shi, “Transformation networks for target-oriented sentiment
classification,” in ACL, (Melbourne, Australia), pp. 946–956, ACL, 2018.

[71] Y. Liang, F. Meng, J. Zhang, J. Xu, Y. Chen, and J. Zhou, “A novel aspect-guided deep
transition model for aspect based sentiment analysis,” in EMNLP-IJCNLP, (Hong Kong,
China), pp. 5569–5580, ACL, 2019.

[72] C. D. Manning and H. Schütze, “Foundations of statistical natural language processing,” in
SGMD, 2002.

[73] M. Haghighi, S. Johnson, X. Qian, K. Lynch, K. Vehik, and a. T. S. G. S. Huang, “A
comparison of rule-based analysis with regression methods in understanding the risk factors
for study withdrawal in a pediatric study,” Scientific Reports, vol. 6, 2016.

[74] R. K. Yadav, L. Jiao, O.-C. Granmo, and M. Goodwin, “Interpretability in Word Sense
Disambiguation using Tsetlin Machine,” in 13th International Conference on Agents and
Artificial Intelligence (ICAART), Vienna, Austria, INSTICC, 2021.

[75] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word representa-
tion,” in EMNLP, (Doha, Qatar), p. 1532–1543, ACL, 2014.

[76] Z. S. Harris, “Distributional structure,” WORD, vol. 10, no. 2-3, pp. 146–162, 1954.

[77] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information Retrieval.
Cambridge University Press, 2008.

[78] J. Turian, L.-A. Ratinov, and Y. Bengio, “Word representations: A simple and general
method for semi-supervised learning,” in Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics, (Uppsala, Sweden), pp. 384–394, Association
for Computational Linguistics, 2010.

[79] R. Socher, J. Bauer, C. D. Manning, and A. Y. Ng, “Parsing with compositional vector
grammars,” in Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), (Sofia, Bulgaria), pp. 455–465, Association for
Computational Linguistics, 2013.

[80] B. Pang and L. Lee, “Seeing stars: Exploiting class relationships for sentiment categoriza-
tion with respect to rating scales,” in ACL, (Michigan, USA), p. 115–124, ACL, 2005.

[81] J. Tang, M. Qu, and Q. Mei, “Pte: Predictive text embedding through large-scale heteroge-
neous text networks,” in Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’15, (Sydney, NSW, Australia), p. 1165–1174,
Association for Computing Machinery, 2015.

76

[82] X. Li and D. Roth, “Learning question classifiers,” in COLING, 2002.

[83] Y. Kim, “Convolutional neural networks for sentence classification,” in Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), (Doha,
Qatar), pp. 1746–1751, ACL, 2014.

[84] P. Liu, X. Qiu, and X. Huang, “Recurrent neural network for text classification with
multi-task learning,” in IJCAI, p. 2873–2879, 2016.

[85] Q. Le and T. Mikolov, “Distributed representations of sentences and documents,” in Pro-
ceedings of the 31st International Conference on Machine Learning, vol. 32 of Proceedings
of Machine Learning Research, (Bejing, China), pp. 1188–1196, PMLR, 22–24 Jun 2014.

[86] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for efficient text
classification,” in EACL: Volume 2, Short Papers, (Valencia, Spain), pp. 427–431, ACL,
2017.

[87] D. Shen, G. Wang, W. Wang, M. R. Min, Q. Su, Y. Zhang, C. Li, R. Henao, and L. Carin,
“Baseline needs more love: On simple word-embedding-based models and associated pooling
mechanisms,” in ACL (Volume 1: Long Papers), (Melbourne, Australia), pp. 440–450, ACL,
2018.

[88] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on
graphs with fast localized spectral filtering,” in Advances in Neural Information Processing
Systems (D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, eds.), vol. 29, Curran
Associates, Inc., 2016.

[89] H. Zhu and P. Koniusz, “Simple spectral graph convolution,” in International Conference
on Learning Representations, 2021.

[90] X. Liu, S. Wang, X. Zhang, X. You, J. Wu, and D. Dou, “Label-guided learning for text
classification,” ArXiv, vol. abs/2002.10772, 2020.

[91] Q. Qin, W. Hu, and B. Liu, “Feature projection for improved text classification,” in ACL,
(Online), pp. 8161–8171, ACL, 2020.

[92] Dragos, , C. Nicolae, and dragosnicolae, “Question classification using interpretable Tsetlin
machine,” in International Workshop of Machine Reasoning, ACM International Conference
on Web Search and Data Mining, 2021.

[93] S. Garg and G. Ramakrishnan, “Bae: Bert-based adversarial examples for text classification,”
arXiv, vol. abs/2004.01970, 2020.

[94] A. Sauer and A. Geiger, “Counterfactual generative networks,” in ICLR, (Online), 2021.

[95] Z. Wang and A. Culotta, “Identifying spurious correlations for robust text classification,” in
Findings of the EMNLP 2020, (Online), pp. 3431–3440, ACL, 2020.

77

[96] E. Wulczyn, N. Thain, and L. Dixon, “Ex machina: Personal attacks seen at scale,” in
International Conference on World Wide Web, (Perth, Australia), p. 1391–1399, WWW,
2017.

[97] S. Kaufman, S. Rosset, C. Perlich, and O. Stitelman, “Leakage in data mining: Formulation,
detection, and avoidance,” ACM Trans. Knowl. Discov. Data, vol. 6, 2012.

[98] D. Kaushik, E. Hovy, and Z. Lipton, “Learning the difference that makes a difference with
counterfactually-augmented data,” in ICLR, (Online), 2020.

[99] R. K. Yadav, L. Jiao, O.-C. Granmo, and M. Goodwin, “Enhancing interpretable clauses
semantically using pretrained word representation,” in Fourth BlackboxNLP Workshop on
Analyzing and Interpreting Neural Networks for NLP, (Punta Cana, Dominican Republic),
pp. 265–274, Association for Computational Linguistics, 2021.

[100] R. K. Yadav, L. Jiao, O.-C. Granmo, and M. Goodwin, “Human-Level Interpretable
Learning for Aspect-Based Sentiment Analysis,” in AAAI, Vancouver, Canada, AAAI, 2021.

[101] O.-C. Granmo, S. Glimsdal, L. Jiao, M. Goodwin, C. W. Omlin, and G. T. Berge, “The
convolutional Tsetlin machine,” arXiv, vol. 1905.09688, 2019.

[102] J. Ni, J. Li, and J. McAuley, “Justifying recommendations using distantly-labeled reviews
and fine-grained aspects,” in EMNLP-IJCNLP, (Hong Kong, China), pp. 188–197, ACL,
2019.

[103] S. Rosenthal, N. Farra, and P. Nakov, “SemEval-2017 task 4: Sentiment analysis in
Twitter,” in Proceedings of the 11th SemEval-2017, (Vancouver, Canada), pp. 502–518,
ACL, 2017.

[104] B. Kim, S. Ryu, and G. Lee, “Two-stage multi-intent detection for spoken language
understanding,” Multimedia Tools and Applications, vol. 76, pp. 11377–11390, 2016.

[105] B. Xu, X. Wang, B. Yang, and Z. Kang, “Target embedding and position attention with
LSTM for aspect based sentiment analysis,” in International Conference on Mathematics
and Artificial Intelligence, ICMAI, (New York, NY, USA), p. 93–97, ACM, 2020.

[106] D. Zeng, K. Liu, S. Lai, G. Zhou, and J. Zhao, “Relation classification via convolutional
deep neural network,” in COLING, Dublin, Ireland, p. 2335–2344, 2014.

[107] Y. Song, J. Wang, T. Jiang, Z. Liu, and Y. Rao, “Attentional encoder network for targeted
sentiment classification,” ArXiv, vol. abs/1902.09314, 2019.

[108] K. Xu, H. Zhao, and T. Liu, “Aspect-specific heterogeneous graph convolutional network
for aspect-based sentiment classification,” IEEE Access, vol. 8, pp. 139346–139355, 2020.

[109] M. Pontiki, D. Galanis, J. Pavlopoulos, H. Papageorgiou, I. Androutsopoulos, and S. Man-
andhar, “SemEval-2014 task 4: Aspect based sentiment analysis,” in Proceedings of the 8th
International Workshop on Semantic Evaluation, SemEval Dublin, Ireland, pp. 27–35, Aug.
2014.

78

[110] M. Pontiki, D. Galanis, H. Papageorgiou, S. Manandhar, and I. Androutsopoulos,
“SemEval-2015 task 12: Aspect based sentiment analysis,” in Proceedings of the 9th Interna-
tional Workshop on Semantic Evaluation, SemEval, Denver, Colorado, USA, pp. 486–495,
2015.

[111] M. Pontiki, D. Galanis, H. Papageorgiou, I. Androutsopoulos, S. Manandhar, M. AL-
Smadi, M. Al-Ayyoub, Y. Zhao, B. Qin, O. De Clercq, V. Hoste, M. Apidianaki, X. Tannier,
N. Loukachevitch, E. Kotelnikov, N. Bel, S. M. Jiménez-Zafra, and G. Eryiğit, “SemEval-
2016 task 5: Aspect based sentiment analysis,” in Proceedings of the 10th International
Workshop on Semantic Evaluation, SemEval, San Diego, California, USA, pp. 19–30, 2016.

[112] W. Chen, Y. Su, Y. Shen, Z. Chen, X. Yan, and W. Y. Wang, “How large a vocabulary
does text classification need? A variational approach to vocabulary selection,” in NAACL,
(Minneapolis, MN, USA), pp. 3487–3497, ACL, June 2019.

[113] C. W. Wu, “Prodsumnet: reducing model parameters in deep neural networks via product-
of-sums matrix decompositions,” arXiv, vol. abs/1809.02209, 2019.

[114] T. Mikolov, M. Karafi, and S. Khudanpur, “Recurrent neural network based language
model,” in INTERSPEECH, Makuhari, Chiba, Japan, 2010.

[115] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recurrent
neural networks on sequence modeling,” in Workshop on Deep Learning@NIPS, (Montréal,
Canada), 2014.

[116] S. Kiritchenko, X. Zhu, C. Cherry, and S. Mohammad, “NRC-Canada-2014: Detecting as-
pects and sentiment in customer reviews,” in International Workshop on Semantic Evaluation
(SemEval 2014), (Dublin, Ireland), pp. 437–442, ACL, 2014.

[117] O. Wallaart and F. Frasincar, “A hybrid approach for aspect-based sentiment analysis
using a lexicalized domain ontology and attentional neural models,” in ESWC, Portoroz,
Slovenia, 2019.

[118] S. Wu, Y. Xu, F. Wu, Z. Yuan, Y. Huang, and X. Li, “Aspect-based sentiment analysis
via fusing multiple sources of textual knowledge,” Knowledge-Based Systems, vol. 183,
p. 104868, 2019.

[119] A. Rietzler, S. Stabinger, P. Opitz, and S. Engl, “Adapt or get left behind: Domain adap-
tation through BERT language model finetuning for aspect-target sentiment classification,”
ArXiv, vol. abs/1908.11860, 2020.

[120] A. Parikh, O. Täckström, D. Das, and J. Uszkoreit, “A decomposable attention model
for natural language inference,” in Conference on Empirical Methods in Natural Language
Processing, (Austin, Texas), pp. 2249–2255, Association for Computational Linguistics,
Nov. 2016.

[121] W. Wang, N. Yang, F. Wei, B. Chang, and M. Zhou, “Gated self-matching networks for
reading comprehension and question answering,” in 55th Annual Meeting of the Association

79

for Computational Linguistics (Volume 1: Long Papers), (Vancouver, Canada), pp. 189–198,
Association for Computational Linguistics, July 2017.

[122] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidi-
rectional transformers for language understanding,” in Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), (Minneapolis, Minnesota), pp. 4171–4186, Association
for Computational Linguistics, June 2019.

[123] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional networks: Visu-
alising image classification models and saliency maps,” CoRR, vol. abs/1312.6034, 2014.

[124] S. Jain and B. C. Wallace, “Attention is not Explanation,” in Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), (Minneapolis, Minnesota), pp. 3543–3556,
Association for Computational Linguistics, June 2019.

[125] O. Zaidan, J. Eisner, and C. Piatko, “Using annotator rationales to improve machine
learning for text categorization,” in Human Language Technologies 2007: The Conference of
the North American Chapter of the Association for Computational Linguistics, (Rochester,
New York), pp. 260–267, Association for Computational Linguistics, Apr. 2007.

[126] Y. Zhang, I. Marshall, and B. C. Wallace, “Rationale-augmented convolutional neural
networks for text classification,” in Conference on Empirical Methods in Natural Language
Processing, (Austin, Texas), pp. 795–804, Association for Computational Linguistics, Nov.
2016.

[127] J. Chung, Çaglar Gülçehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated
recurrent neural networks on sequence modeling,” ArXiv, vol. abs/1412.3555, 2014.

80

Part II

Appended Papers

81

A

Appendix A

Paper A

Title: Interpretability in Word Sense Disambiguation Using Tsetlin Ma-
chine

Authors: Rohan Kumar Yadav, Lei Jiao, Ole-Christoffer Granmo, and
Morten Goodwin

Affiliation: University of Agder, Faculty of Engineering and Science, 4879,
Grimstad, Norway

Conference: 13th International Conference on Agents and Artificial Intelligence
(ICAART), Vienna, Austria, Feb. 2021.

DOI: 10.5220/0010382104020409.

83

https://DOI: 10.5220/0010382104020409

A

A
Interpretability in Word Sense Disambiguation Using Tsetlin

Machine

Rohan Kumar Yadav, Lei Jiao, Ole-Christoffer Granmo, and Morten Goodwin
Department of Information and Communication Technology

Faculty of Engineering and Science, University of Agder
4879, Grimstad, Norway

E-mails: {rohan.k.yadav, lei.jiao, ole.granmo, morten.goodwi}@uia.no

Abstract — Word Sense Disambiguation (WSD) is a longstanding unresolved task in Natu-
ral Language Processing. The challenge lies in the fact that words with the same spelling
can have completely different senses, sometimes depending on subtle characteristics of
the context. A weakness of the state-of-the-art supervised models, however, is that it
can be difficult to interpret them, making it harder to check if they capture senses accu-
rately or not. In this paper, we introduce a novel Tsetlin Machine (TM) based supervised
model that distinguishes word senses by means of conjunctive clauses. The clauses are
formulated based on contextual cues, represented in propositional logic. Our experiments
on CoarseWSD-balanced dataset indicate that the learned word senses can be relatively
effortlessly interpreted by analyzing the converged model of the TM. Additionally, the
classification accuracy is higher than that of FastText-Base and similar to that of FastText-
CommonCrawl.

85

A
A.1 Introduction

Word Sense Disambiguation (WSD) is one of the unsolved task in Natural Language Process-
ing (NLP) [1] with rapidly increasing importance, particularly due to the advent of chatbots.
WSD consists of distinguishing the meaning of homographs – identically spelled words whose
sense or meaning depends on the surrounding context words in a sentence or a paragraph. WSD
is one of the main NLP tasks that still revolves around the perfect solution of sense classification
and indication [2], and it usually fails to be integrated into NLP applications [3]. Many super-
vised approaches attempt to solve the WSD problem by training a model on sense annotated
data [4]. However, most of them fail to produce interpretable models. Because word senses can
be radically different depending on the context, interpretation errors can have adverse conse-
quences in real applications, such as chatbots. It is therefore crucial for a WSD model to be
easily interpretable for human beings, by showing the significance of context words for WSD.

NLP is one of the discipline that are used as the application in a chatbot. With the recent
proliferation of chatbots, the limitations of the state-of-the-art WSD has become increasingly
apparent. In real-life operation, chatbots are notoriously poor in distinguishing the meaning of
words with multiple senses, distinct for different contexts. For example, let us consider the word
“book” in the sentence “I want to book a ticket for the upcoming movie”. Although a traditional
chatbot can classify “book” as “reservation” rather than “reading material”, it does not give us
an explanation of how it learns the meaning of the target word “book”. An unexplained model
raises several questions, like: “How can we trust the model?” or “How did the model make the
decision?”. Answering these questions would undoubtedly make a chatbot more trustworthy. In
particular, deciding word senses for the wrong reasons may lead to undesirable consequences, e.g.,
leading the chatbot astray or falsely categorizing a CV. Introducing a high level of interpretability
while maintaining classification accuracy is a challenge that the state-of-the-art NLP techniques
so far have failed to solve satisfactorily.

Although some of the rule-based methods, like decision trees, are somewhat easy to interpret,
other methods are out of reach for comprehensive interpretation [5], such as Deep Neural
Networks (DNNs). Despite the excellent accuracy achieved by DNNs, the “black box” nature
impedes their impact [6]. It is difficult for human beings to interpret the decision-making process
of artificial neurons. Weights and bias of deep neural networks are in the form of fine-tuned
continuous values that make it intricate to distinguish the context words that drive the decision
for classification. Some straightforward techniques such as Naive Bayes classifier, logistic
regression, decision trees, random forest, and support vector machine are therefore still widely
used because of their simplicity and interpretability. However, they provide reasonable accuracy
only when the data is limited.

In this paper, we aim to obtain human-interpretable classification of the CoarseWSD-balanced
dataset, using the recently introduced Tsetlin Machine (TM). Our goal is to achieve a viable
balance between accuracy and interpretability by introducing a novel model for linguistic patterns.
TM is a human interpretable pattern recognition method that composes patterns in propositional
logic. Recently, it has provided comparable accuracy as compared to DNN with arguably less
computational complexity, while maintaining high interpretability. We demonstrate how our
model learns pertinent patterns based on the context words, and explore which context words
drive the classification decisions of each particular word sense. The rest of the paper is arranged

86

A
as follows: The related work on WSD and TM are explained in Section A.2. Our TM-based
WSD-architecture, the learning process, and our approach to interpretability are covered in
Section A.3. Section A.4 presents the experiment results for interpretability and accuracy. We
conclude the paper in Section A.5.

A.2 Related Work

The research area of WSD is attracting increasing attention in the NLP community [1] and has
lately experienced rapid progress [7, 8, 9]. In all brevity, WSD methods can be categorized
into two groups: knowledge-based and supervised WSD. Knowledge-based methods involve
selecting the sense of an ambiguous word from the semantic structure of lexical knowledge bases
[10]. For instance, the semantic structure of BabelNet has been used to measure word similarity
[11]. The benefit of using such models is that they do not require annotated or unannotated
data but rely heavily on the synset relations. Regarding supervised WSD, traditional approaches
generally depend on extracting features from the context words that are present around the target
word [12].

The success of deep learning has significantly fueled WSD research. For example, Le et al.
have reproduced the state-of-the-art performance of an LSTM-based approach to WSD on several
openly available datasets : GigaWord, SemCor [13], and OMSTI [14]. Apart from traditional
supervised WSD, embedding is becoming increasingly popular to capture the senses of words
[15]. Further, Majid et al. improve the state-of-the-art supervised WSD by assigning vector
coefficients to obtain more precise context representations, and then applying PCA dimensionality
reduction to find a better transformation of the features [16]. Salomonsson presents a supervised
classifier based on bidirectional LSTM for the lexical sample task of the Senseval dataset [17].

Contextually-aware word embedding has been extensively addressed with other machine
learning approaches across many disciplines. Perhaps the most relevant one is the work on
neural network embedding [18, 19, 20]. There is a fundamental difference between our work and
previous ones in terms of interpretability. Existing methods yield complex vectorized embedding,
which can hardly be claimed to be human interpretable. Furthermore, natural language processing
has, in recent years, been dominated by neural network-based attention mechanisms [21, 22].
Even though attentions and the attention-based transformers [23] implementation provide the
state-of-the-art results, the methods are overly complicated and far from interpretable. The
recently introduced work [24] shows how contextual information influences the sense of a word
via the analysis of WSD on BERT.

All these contributions clearly show that supervised neural models can achieve the state-
of-the-art performance in terms of accuracy without considering external language-specific
features. However, such neural network models are criticized for being difficult to interpret due
to their black-box nature [25]. To introduce interpretability, we employ the newly developed
TM for WSD in this study. The TM paradigm is inherently interpretable by producing rules
in propositional logic [26]. TMs have demonstrated promising results in various classification
tasks involving image data [27], NLP tasks [28, 29, 30, 31] and board games [26]. Although
the TM operates on binary data, recent work suggests that a threshold-based representation of
continuous input allows the TM to perform successfully beyond binary data, e.g., applied to

87

A
diseases outbreak forecasting [32]. Additionally, the convergence of TM has been analysed in
[33].

A.3 System Architecture for Word Sense Disambiguation

A.3.1 Basic Concept of Tsetlin Machine for Classifying Word Senses

At the core of the TM one finds a novel game-theoretic scheme that organizes a decentralized team
of Tsetlin Automata (TAs). The scheme guides the TAs to learn arbitrarily complex propositional
formula, based on disjunctive normal form (DNF). Despite its capacity to learn complex nonlinear
patterns, a TM is still interpretable in the sense that it decomposes problems into self-contained
sub-patterns that can be interpreted in isolation. Each sub-pattern is represented as a conjunctive
clause, which is a conjunction of literals with each literal representing either an input bit or its
negation. Accordingly, both the representation and evaluation of sub-patterns are Boolean. This
makes the TM computationally efficient and hardware friendly compared with other methods. In
the following paragraphs, we present how the TM architecture can be used for WSD.

The first step in our architecture for WSD, shown in Fig. A.2, is to remove the stop-words
from the text corpus, and then stem the remaining words1. Thereafter, each word is assigned a
propositional variable xk ∈ {0, 1}, k ∈ {1, 2, . . . , n}, determining the presence or absence of
that word in the context, with n being the size of the vocabulary. Let X = [x1, x2,, xn] be the
feature vector (input) for the TM, which is thus a simple bag of words constructed from the text
corpus, as shown in Fig. A.2.

The above feature vector is then fed to a TM classifier, whose overall architecture is shown in
Fig. A.1. Multiclass Tsetlin Machine consists of multiple TM and each TM has several TA teams
which is expanded in Fig. A.1(b). We first cover how the TM performs classification before we
show how the classification rules are formed to perform WSD. As shown in Fig. A.1(b), X
is the input to the TM. For our purpose, each sense is seen as a class, and the context of the
word to be disambiguated is the feature vector (the bag of words). If there are q classes and m

sub-patterns per class, the classification problem can be solved using q ×m conjunctive clauses,
Cj

i , 1 ≤ j ≤ q, 1 ≤ i ≤ m:

Cj
i =

∧
k∈Iji

xk

 ∧

∧
k∈Īji

¬xk

 , (A.1)

where Iji and Īji are non-overlapping subsets of the input variable indexes. A particular subset is
responsible for deciding which of the propositional variables take part in the clause and also if
they are negated or not. In more details, the indices of input variables in I ij represent the literals
that are included as is, while the indices of input variables in Ī ij correspond to the negated ones.
The propositional variables or their negations are related with the conjunction operator to form a
clause Cj

i (X) which is shown as example in Eq. (A.2)

Cj
i (X) = x1 ∧ ¬x3 ∧ . . . ∧ xk−1 ∧ ¬xk. (A.2)

1In this work, we used the PortStemmer package.

88

A

Figure A.1: The architecture of (a) multiclass Tsetlin Machine, (b) a TA-team forms the clause
Cj

i , 1 ≤ j ≤ q, 1 ≤ i ≤ m.

Apple will launch
Iphone 12 next year.

I like apple more than
orange.

re
m

ov
e

st
op

w
or

ds

St
em

m
er

apple
launch
year

iphone

like
apple

orange
more

apple
launch
year

iphone

like
orange
more

1 0 0 11 1 0

1 1 0 00 0 1

Text corpus 1

Text corpus 2

vocab list
Input 1

Input 2

Figure A.2: Preprocessing of text corpus for input to TM.

To distinguish the class pattern from other patterns (1-vs-all), clauses with odd indexes are
assigned positive polarity (+) and the even indexed ones are assigned negative (−). Clauses
with positive polarity vote for the target class, while clauses with negative index vote against it.
Finally, a summation operator aggregates the votes by subtracting the number of negative votes
from the positive votes, per Eq. (A.3).

f j(X) = Σm
i=1(−1)m−1Cj

i (X). (A.3)

In a multi-class TM, the final decision is made by an argmax operator to classify the input

89

A
based on the highest sum of votes, as shown in Eq. (A.4):

y = argmaxj
(
f j(X)

)
. (A.4)

A.3.2 Training of the Proposed Scheme

The training of the TM is explained in detail in [26]. Our focus here is how the word senses are
captured from data. Let us consider one training example (X, ŷ). The input vector X – a bag of
words – represents the input to the TM. The target ŷ is the sense of the target word.

Multiple teams of TAs are responsible for TM learning. As shown in Fig. A.1(b), a clause is
assigned one TA per literal. A TA is a deterministic automaton that learns the optimal action
among the set of actions provided by the environment. The environment, in this particular
application, is the training samples together with the updating rule of the TA, which is detailed
in [26]. Each TA in the TM has 2N states and decides among two actions: Action 1 and Action
2, as shown in Fig. A.3. The present state of the TA decides its action. Action 1 is performed
from state 1 to N whereas Action 2 is performed for states N + 1 to 2N . The selected action
is rewarded or penalized by the environment. When a TA receives a reward, it emphasizes the
action performed by moving away from the center (towards left or right end). However, if penalty
happens, the TA moves towards the center to weaken the performed action, eventually switching
to the other action.

Action 1 Action 2

Penatly Reward

Figure A.3: Representation of two actions of TA.

In TM, each TA chooses either to exclude (Action 1) or include (Action 2) its assigned
literal. Based on the decisions of the TA team, the structure of the clause is determined and the
clause can therefore generate an output for the given input X . Thereafter, the state of each TA is
updated based on its current state, the output of the clause Cj

i for the training input X , and the
target ŷ.

We illustrate here the training process by way of example, showing how a clause is built
by excluding and including words. We consider the bag of words for “Text Corpus 2”: (apple,
like, orange, and more) in Fig. A.2, converted into binary form “Input 2”. As per Fig. A.4,
there are eight TAs with N = 100 states per action that co-produce a single clause. The four
TAs (TA to the left in Fig. A.4) vote for the intended sense with “more”, “like”, “orange”, and
“apple”, whereas the four TAs (TA’ to the right in Fig. A.4) vote against it. The terms that are
moving away from the central states are receiving rewards, while those moving towards the
centre states are receiving penalties. In Fig. A.4, from the TAs to the left, we obtain a clause2

2As the clause describes a sub-pattern within the same class, we ignore the superscript for different classes in
notation Cj

i .

90

A
C1 = “apple” ∧ “like”. The status of “orange” is excluded for now. However, after observing
more evidences from the “Input 2”, the TA of “orange” is penalized for its current action, making
it change its action from exclude to include eventually. In this way, after more updates, the word
“orange” is to be included in the clause, thereby making C1 = “apple” ∧ “like” ∧ “orange”,
increasing the precision of the sub-pattern and thereby the classification.

more

like

orange
more
like

Exclude Include IncludeExclude

1 2 100 101 102 200 1 2 100 101 102 200

TA TA'

apple
apple

orange

Figure A.4: Eight TA with 100 states per action that learn whether to exclude or include a specific
word (or its negation) in a clause.

A.3.3 Interpretable Classification Process

We now detail the interpretability once the TM has been trained. In brief, the interpretability
is based on the analysis of clauses. Let us consider the noun “apple” as the target word. For
simplicity, we consider two senses of “apple”, i.e., Company as sense s1 and Fruit as sense s2.
The text corpus for s1 is related to the apple being a company, whereas for s2 it is related to the
apple being a fruit.

1 0 0 1 0

apple, launch, iphone, next, yearTokens

Binary input

0 1 2 k-1 kIndex

apple orange year NA

apple iphone NA NA

orange next year NA

orange like launch iphone

apple orange more NA

orange like apple more

apple like iphone orange

Figure A.5: Structure of clauses formed by the combination of sub-patterns. Green color
indicates the literals that are included as original, red color indicates the literals that are included
as the negated form and the blue color boxes indicates that there are no literals because not all
the clauses has same number of literals.

Let us consider a test sample Itest = [apple, launch, iphone, next, year] and how its sense is
classified based on the context words. This set of words is first converted to binary form based

91

A
on a bag of words as described earlier in Fig. A.2.

To extract the clauses that vote for sense s1, the test sample Itest is passed to the model and
the clauses that vote for the presence of sense s1 are observed as shown in Fig. A.5. The literals
formed by TM are expressed in indices of the tokens. For ease of understanding, it has been
replaced by the corresponding word tokens. The green box shows that the literal is non-negated
whereas the red box denotes the negated form of the literal as shown in Fig. A.5. For example,
the sub-patterns created by clause C3 = apple ∧ ¬orange ∧ ¬more. These clauses consist of
included literals in conjunctive normal form (CNF). Since the clauses in the TM are trained
sample-wise, there exist several randomly placed literals in each clause. These random literals
just occur because of randomly picked words that do not effect the classification. These literals
are assigned to be non-important literals and their frequency of occurrence is low. On the other
hand, the literals that has higher frequency among the clauses are considered to be important
literals and hence makes significant impact on classification. Here, we emphasize on separating
important and non-important literals for easy human interpretation. The general concept for
finding the important words for a certain sense is to observe the frequency of appearances for a
certain word in the trained clauses. To do that, in the above example, once the TM is trained, the
literals in clauses that output 1 or votes for the presence of the class s1 for Itest are collected first,
as shown in Eq. (A.5):

Lt =
⋃
k,j,
∀Cj=1

{xj
k,¬x

j
k}, (A.5)

where xj
k is the kth literal, i.e., xk, that appears in clause j and ¬xj

k is the negation of the literal.
Note that a certain literal xk may appear many times in Lt due to the multiple clauses that
output 1. Clearly, Lt is a set of literals (words) that appears in all clauses that contribute to the
classification of class s1. The next step is to find frequently appearing literals (words) in Lt,
which correspond to the important words. We define a function, β(h,H), which returns the
number of the elements h in the set H . We can then formulate a set of the numbers for all literals
xk and their negations ¬xk in Lt, k ∈ {1, 2, . . . , n}, as shown in Eq. (A.6):

St =
{ ⋃

k=1:n

β(xk, Lt),
⋃

k=1:n

β(¬xk, Lt)
}
. (A.6)

We rank the number of elements in set St in descending order and consider the first η percent
in the rank as the important literals. Similarly, we define the last η percent in the rank as
non-important literals. To distinguish the important literals more precisely, several independent
experiments can be carried out for a certain sense. Following the same concept, the literals in M

different experiments can be collected to one set Lt(total) as shown in Eq. (A.7):

Lt(total) =
M⋃
e=1

(Lt)e, (A.7)

where (Lt)e is the set of literals for the eth experiment. Similarly, the counts of all literals in
these experiments, stored in set St(total) shown in Eq. (A.8), are again ranked and the top η

percent is deemed as important literals and the last η percent is the non-important literals. The

92

A
parameter η is to be tuned according to the level of human interpretation required for a certain
task.

St(total) =

{ ⋃
k=1:n

β(xk, Lt(total)),
⋃

k=1:n

β(¬xk, Lt(total))

}
. (A.8)

A.4 Evaluations

We present here the classification and interpretation results on CoarseWSD-balanced dataset.
There are 20 words having more than two senses to be classified. We select four of them to
evaluate our model. The reason for selecting only four words than using all 20 words is that we
want to show that TM preserves interpretability with maintaining state-of-the-art accuracy. So
using only four words are enough to represent the trade of between interpretability and accuracy.
The details of four datasets are shown in Table A.1. To train the TM for this task, we use the
same configuration of hyperparameters for all the target words. More specifically, we use the
number of clauses, specificity s and target T as 500, 5 and 80 for Apple and JAVA whereas 250,
3 and 30 for Spring and Crane. After the model is trained for each target, we validate our results
using test data.

Table A.1: Senses associated with each word that is to be classified.

Dataset Sense1 Sense2 Sense3
Apple fruit company NA
JAVA computer location NA
Spring hydrology season device
Crane machine bird NA

To illustrate the interpretability, let us take a sample as an example to extract the literals
that are responsible for the classification of an input sentence: “former apple ceo, steve jobs,
holding a white iphone 4”. Once this input is passed through the model, TM predicts its sense
as a company and we examine the clauses that output 1. We append all the literals that are
presented in each clause and calculate the number of appearances for each literal. The number of
appearances of a certain literal for the selected sample after one experiment is shown in Figs. A.6
and A.7 by a blue line. After five experiments, the number for a certain literal is shown by a red
line in Figs. A.6 and A.7. Clearly, it makes sense that the negated form of the mostly-appearing
literals in ’. A.6, i.e., “not tree”, “not fruit”, “ not cherries” etc. indicate that the word “apple”
does not mean a fruit but a company. Nevertheless, as stated in the previous section, there are
also some literals which are randomly placed in the clause and are non repetitive because the
counts refuse to climb up for the same input, marking them not important literals, shown in Fig.
A.7.

In addition to the interpretability of TM based approach, the accuracy is also an important
parameter for performance evaluation. Even though the selected datasets have binary sense
classification, we will use Micro-F1 and Macro-F1 as the evaluation metrics as shown in [24].

93

A

tre
e

fru
it

ch
er
rie

s
or
ch

ar
d

ga
rd
en

pe
ar

ar
ea

so
un

d
pl
an

t
gr
ow

or
an

ge
cu

lti
va

rs
po

ta
to

go
ld
en st
uf

st
em

re
ve

al
ed bo
il

th
ym

e
as
pe

n v
ro
pe

re
sis

t
bo

ll
m
ea

n
va

rie
ty

m
od

e
to
m
at
o

ch
ee

s
ca
bl
e

literals

0

5

10

15

20

25

30

35

40

co
un

ts

exp1
exp5

Figure A.6: Count of first 30 literals that are in negated form for classifying the sense of apple as
company. (considered as important literals)

pi
lo
t

va
ria

nt nt
p

ev
ol
ut
io
n

ea
rli
es
t

an
de

rs
on

pa
la
te

liv
ec

yl
e

bo
ss ss
d

ho
wa

rd
cr
ab

lic
or
ice

in
se
ct
ici
de

do
nn

yb
ro
ok

pe
ar
m
ai
n

fre
el
y

vi
sa

riv
al iso tu
ft

ke
nt

se
ns

e
isi
gh

t
ev

ol
ve el
se

ca
ss
av

a
as
tro

na
ut

br
ed

ha
nd

se
t

literals

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

co
un

ts

exp1
exp5

Figure A.7: Count of last 30 literals that are in negated form for classifying the sense of apple as
company. (considered as non-important literals)

94

A
Since, interpretation of WSD is the main concern of the paper, we will compare our work with
the latest benchmark [24]. Table A.2 show the comparison of Macro and Micro F1 score on
CoarseWSD dataset for 4 different methods: FastText-Base (FTX-B), FastText-CommonCrawl
(FTX-C), 1 neural network (NN) BERT base, and our proposed TM. FTX-B is a fast text linear
classifier without pre-trained embeddings and FTX-C is a fast text linear classifier with pre-
trained embedding from Common Crawl. These are considered as the standard baseline for this
dataset [24]. Our proposed TM based WSD easily outperforms FTX-B baseline and is close to
FTX-C without even considering the pretrained embedding. However, TM falls short of BERT’s
performance given that it is a huge language model that achieves the state-of-the-art performance
on most of the task. This shows that TM not only possesses the interpretation of the WSD but
also has performance close to the state of the art.

Datasets
Micro-F1 Macro-F1

FTX-B FTX-C BRT-B TM FTX-B FTX-C BRT-B TM
Apple 96.3 97.8 99.0 97.58 96.6 97.7 99.0 97.45
JAVA 98.7 99.5 99.6 99.38 61.1 84.1 99.8 99.35
Spring 86.9 92.5 97.4 90.78 78.8 96.4 97.2 90.76
Crane 87.9 94.9 94.2 93.63 88.0 94.8 94.1 93.62

Table A.2: Results on the full CoarseWSD balanced dataset for 4 different models: FastText-Base
(FTX-B), FastText-CommonCrawl (FTX-C), 1 Neural Network BERT-Base (BRT-B) and Tsetlin
Machine (TM). Table cells are highlighted (dark blue to light blue) for better visualization of
accuracy.

A.5 Conclusions

This paper proposed a sense categorization approach based on recently introduced TM. Although
there are various methods for sense classification on CoarseWSD-balanced dataset with good
accuracy, many machine learning algorithms fail to provide human interpretation that is used
for explaining the procedure of particular classification. To overcome this issue, we present a
TM-based sense classifier that learns the formulae form text corpus utilizing conjunctive clauses
to demonstrate a particular feature of each category. Numerical results indicate that the TM
based approach is human-interpretable and it achieves a competitive accuracy, which shows its
potential for further WSD studies. In conclusion, we believe that the novel TM-based approach
can have a significant impact on sense identification that is a very important factor in a chatbot
or other WSD tasks.

95

A

A
Bibliography

[1] E. Agirre and P. Edmonds, “Word sense disambiguation: Algorithms and applications,” in
Springer, Dordrecht, 2007.

[2] R. Navigli, J. Camacho-Collados, and A. Raganato, “Word sense disambiguation: A
unified evaluation framework and empirical comparison,” in EACL, 2017.

[3] O. L. de Lacalle and E. Agirre, “A methodology for word sense disambiguation at 90%
based on large-scale crowdsourcing,” in SEM@NAACL-HLT, 2015.

[4] K. Liao, D. Ye, and Y. Xi, “Research on enterprise text knowledge classification based
on knowledge schema,” in 2010 2nd IEEE International Conference on Information
Management and Engineering, pp. 452–456, April 2010.

[5] Y. Wang, L. Wang, M. Rastegar-Mojarad, S. Moon, F. Shen, N. Afzal, S. Liu, Y. Zeng,
S. Mehrabi, S. Sohn, and H. Liu, “Clinical information extraction applications: A literature
review,” Journal of Biomedical Informatics, vol. 77, pp. 34 – 49, 2018.

[6] C. Rudin, “Stop explaining black box machine learning models for high stakes decisions
and use interpretable models instead,” 2018.

[7] D. Yuan, J. Richardson, R. Doherty, C. Evans, and E. Altendorf, “Semi-supervised word
sense disambiguation with neural models,” in COLING, 2016.

[8] R. Tripodi and M. Pelillo, “A game-theoretic approach to word sense disambiguation,”
Computational Linguistics, vol. 43, p. 31–70, Apr 2017.

[9] C. Hadiwinoto, H. T. Ng, and W. C. Gan, “Improved word sense disambiguation using
pre-trained contextualized word representations,” 2019.

[10] R. Navigli and P. Velardi, “Structural semantic interconnection: A knowledge-based
approach to word sense disambiguation,” in SENSEVAL@ACL, 2004.

[11] O. Dongsuk, S. Kwon, K. Kim, and Y. Ko, “Word sense disambiguation based on word
similarity calculation using word vector representation from a knowledge-based graph,”
in COLING, 2018.

[12] Z. Zhong and H. T. Ng, “It makes sense: A wide-coverage word sense disambiguation
system for free text,” in ACL, 2010.

[13] G. A. Miller, M. Chodorow, S. Landes, C. Leacock, and R. G. Thomas, “Using a semantic
concordance for sense identification,” in HLT, 1994.

[14] K. Taghipour and H. T. Ng, “One million sense-tagged instances for word sense disam-
biguation and induction,” in CoNLL, 2015.

[15] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed representations
of words and phrases and their compositionality,” ArXiv, vol. abs/1310.4546, 2013.

97

A
[16] M. F. Sadi, E. Ansari, and M. Afsharchi, “Supervised word sense disambiguation using

new features based on word embeddings,” J. Intell. Fuzzy Syst., vol. 37, pp. 1467–1476,
2019.

[17] M. Kågebäck and H. Salomonsson, “Word sense disambiguation using a bidirectional
LSTM,” in CogALex@COLING, 2016.

[18] S. M. Rezaeinia, R. Rahmani, A. Ghodsi, and H. Veisi, “Sentiment analysis based on
improved pre-trained word embeddings,” Expert Systems with Applications, vol. 117,
pp. 139–147, 2019.

[19] F. K. Khattak, S. Jeblee, C. Pou-Prom, M. Abdalla, C. Meaney, and F. Rudzicz, “A survey
of word embeddings for clinical text,” Journal of Biomedical Informatics: X, vol. 4,
p. 100057, 2019.

[20] M. B. Lazreg, M. Goodwin, and O.-C. Granmo, “Combining a context aware neural
network with a denoising autoencoder for measuring string similarities,” Computer Speech
& Language, vol. 60, p. 101028, 2020.

[21] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin, “Attention is all you need,” in Advances in neural information processing
systems, pp. 5998–6008, 2017.

[22] S. Sonkar, A. E. Waters, and R. G. Baraniuk, “Attention word embedding,” arXiv preprint
arXiv:2006.00988, 2020.

[23] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidi-
rectional transformers for language understanding,” arXiv preprint arXiv:1810.04805,
2018.

[24] D. Loureiro, K. Rezaee, M. T. Pilehvar, and J. Camacho-Collados, “Language models and
word sense disambiguation: An overview and analysis,” 2020.

[25] V. Buhrmester, D. Münch, and M. Arens, “Analysis of explainers of black box deep neural
networks for computer vision: A survey,” 2019.

[26] O.-C. Granmo, “The Tsetlin machine - a game theoretic bandit driven approach to optimal
pattern recognition with propositional logic,” 2018.

[27] O.-C. Granmo, S. Glimsdal, L. Jiao, M. Goodwin, C. W. Omlin, and G. T. Berge, “The
convolutional Tsetlin machine,” 2019.

[28] R. K. Yadav, L. Jiao, O.-C. Granmo, and M. Goodwin, “Human-level interpretable
learning for aspect-based sentiment analysis,” in The Thirty-Fifth AAAI Conference on
Artificial Intelligence (AAAI-21), AAAI, 2021.

[29] B. Bhattarai, O.-C. Granmo, and L. Jiao, “Measuring the novelty of natural lan-
guage text using the conjunctive clauses of a Tsetlin machine text classifier,” ArXiv,
vol. abs/2011.08755, 2020.

98

[30] G. T. Berge, O. Granmo, T. O. Tveit, M. Goodwin, L. Jiao, and B. V. Matheussen,
“Using the Tsetlin machine to learn human-interpretable rules for high-accuracy text
categorization with medical applications,” IEEE Access, vol. 7, pp. 115134–115146, 2019.

[31] R. Saha, O.-C. Granmo, and M. Goodwin, “Mining interpretable rules for sentiment
and semantic relation analysis using Tsetlin machines,” in Artificial Intelligence XXXVII,
pp. 67–78, Springer International Publishing, 2020.

[32] K. D. Abeyrathna, O.-C. Granmo, X. Zhang, L. Jiao, and M. Goodwin, “The regression
Tsetlin machine: A novel approach to interpretable nonlinear regression,” Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
vol. 378, 2019.

[33] X. Zhang, L. Jiao, O.-C. Granmo, and M. Goodwin, “On the convergence of Tsetlin
machines for the identity-and not operators,” arXiv preprint arXiv:2007.14268, 2020.

99

B

Appendix B

Paper B

Title: Human-Level Interpretable Learning for Aspect-Based Sentiment
Analysis

Authors: Rohan Kumar Yadav, Lei Jiao, Ole-Christoffer Granmo, and
Morten Goodwin

Affiliation: University of Agder, Faculty of Engineering and Science, 4879,
Grimstad, Norway

Conference: 35th AAAI Conference on Artificial Intelligence (AAAI), Online,
Feb. 2021.

DOI: .

101

https://ojs.aaai.org/index.php/AAAI/article/view/17671

B

B

Human-Level Interpretable Learning for Aspect-Based
Sentiment Analysis

Rohan Kumar Yadav, Lei Jiao, Ole-Christoffer Granmo, and Morten Goodwin
Department of Information and Communication Technology

Faculty of Engineering and Science, University of Agder
4879, Grimstad, Norway

E-mails: {rohan.k.yadav, lei.jiao, ole.granmo, morten.goodwi}@uia.no

Abstract — This paper proposes a human-interpretable learning approach for aspect-based
sentiment analysis (ABSA), employing the recently introduced Tsetlin Machines (TMs).
We attain interpretability by converting the intricate position-dependent textual semantics
into binary form, mapping all the features into bag-of-words (BOWs). The binary-form
BOWs are encoded so that the information on the aspect and context words are retained for
sentiment classification. We further adopt the BOWs as input to the TM, enabling learning
of aspect-based sentiment patterns in propositional logic. To evaluate interpretability and
accuracy, we conducted experiments on two widely used ABSA datasets from SemEval
2014: Restaurant 14 and Laptop 14. The experiments show how each relevant feature
takes part in conjunctive clauses that contain the context information for the corresponding
aspect word, demonstrating human-level interpretability. At the same time, the obtained
accuracy is on par with existing neural network models, reaching 78.02% on Restaurant
14 and 73.51% on Laptop 14.

103

B

B.1 Introduction

Sentiment analysis, which identifies people’s opinion on specific topics, is a classic problem in
natural language processing (NLP). Under the umbrella of sentiment analysis, aspect-based senti-
ment analysis (ABSA), which is a fine-grained evaluation framework for sentiment classification
[1], has become a hot research topic [2]. Among various tasks in ABSA, this paper focuses on
the sentiment polarity (positive, neutral, negative) of a target word in given comments or reviews.
For example, let us consider a review: “Certainly not the best sushi in New York, however, it is
always fresh and the place is very clean, sterile”. The target word “sushi” is closely associated
with its context words “not best”, assorting it as a negative polarity. The target word, “place”, is
associated with its context words “clean” and “sterile”, classifying it as a positive sentiment.
Such a complex form of sentiment classification is highly dependent on where the word appears
in the sentence. To address this challenge, several recent approaches to ABSA have been based
on attention mechanisms [3]. Although the accuracy of attention-based ABSA approaches are
progressively improved, the interpretability of these models is still questionable, making them
less trust-worthy. Not surprisingly, little research has been done on ABSA learning techniques
that are interpretable at a human level [4].

Recently, interpretable AI has taken a big leap in industrial application [5]. Indeed, the
scientific community has performed extensive research on ways to interpret neural networks. In a
modern neural network, one can use the fact that the variants of attention [6] assign soft weights
to the input representations, and then extract highly weighted tokens as rationales. However,
these attention weights do not provide faithful explanations for classification [7, 8, 9, 10]. On
the other hand, certain classic models, like Decision Trees, are particularly easy to understand,
yet still compromise on accuracy compared with neural networks. Hence, an effective trade-off
between accuracy and interpretability has still not been achieved.

In this article, we propose a Tsetlin Machine (TM) [11] based ABSA that employs a binary
representation of the input features. The resulting architecture is interpretable and achieves
competitive accuracy compared with state-of-the-art techniques. The ABSA task has two
important inputs: a context word and an aspect word. Such aspect-based classification usually
relies heavily on the position of the aspect word in the context. Such position information can be
easily embedded in the neural network models. However, in TM, as all patterns and outputs are
expressed in bits, learning and classification depend on bit manipulation, making it a challenging
task to embed all the information into binary form. We therefore also aim to propose an extensive
pre-processing approach for the ABSA inputs so that the binary form retains as much useful
information as possible for the classification.

Our main contributions can be summarized as follows:

• We propose a novel pre-processing scheme to convert the ABSA inputs into binary form
with limited information loss.

• We design an interpretable learning architecture using TM. The architecture offers human-
level interpretable results with comparable classification accuracy.

• We employ additional knowledge from SentiWordnet [12] to enhance the accuracy of the
architecture. It provides additional knowledge to the model and has significant impact on
accuracy as explained later.

104

B

The remainder of the paper is organized as follows: We summarize related work in Section 2.
The proposed pre-processing and TM architecture along with its learning process are described
in Section 3. In Section 4, we report the experiment results and the comparisons with state-of-
the-art. The interpretability of trained models is demonstrated in Section 5 before we conclude
this work in Section 6.

B.2 Related Work

Sentiment analysis operates at three levels: document level, sentence level and aspect level. This
work focuses on aspect level. Most of traditional supervised approaches depend heavily on
handcrafted features to identify the sentiment of a word based on its context [13, 14]. However,
these models fail to capture the semantic relatedness between the aspect word and its context.
This problem gives rise to the attention-based models that are able to capture such a relationship
[15, 6, 16, 17]. Furthermore, it is shown in [18] how an attention layer captures the weightage
of the context words for predicting the sentiment of an aspect word. However, existing models
cannot leverage the syntactic structure of the sentence, thereby making it difficult to distinguish
various sentiments for multiple aspects of the sentence. To address this challenge, the RepWalk
neural network model was recentely proposed [19]. It performs a replicated random walk on a
syntax graph, effectively focusing on the descriptive contextual words.

Despite the fact that neural network-based models with attention, including BERT and
contextualized embedding [6, 20, 21], capture the semantic relatedness among words in the
context, they still lack interpretability. This arguably makes them black box models [22]. Many
applications of attention mechanisms show, however, that a model can interpreted based on
the weight assigned by the attention vector to each input, but they do not provide a faithful
explanation of classification [7, 8]. Many researchers have attempted to replicate human learning
behavior in neural networks [23], but have failed to answer the question of making the learning
interpretable. In order to overcome the issue of interpretability in NLP, we explore the recently
introduced Tsetlin Machine (TM), which recognizes patterns in the form of propositional logic
[11, 24]. TMs have demonstrated promising results in various classification tasks involving
numerical data, image data, text data, and board games [25, 26].

In this paper, we aim to reduce the gap between interpretability and accuracy with a significant
margin on the ABSA task. To the best of our knowledge, this is the first study using TM to
explore how each word in the context includes or excludes themselves to form conjunctive clauses
for sentiment classification. Once the model is trained, clauses in the TM hold the information
about which individual features in the context take part in the sentiment classification of the
aspect word.

B.3 Methodology

B.3.1 Input Binarization

For both datasets, the ABSA tasks have a context word and an aspect word whose polarity is to
be classified. Usually, the sentiment of the aspect word is reflected by its surrounding words in a

105

B

The price is reasonable although the service is poor. price

The price is reasonable although the service is poor. service

Sentence Aspect word

Figure B.1: Representation of an aspect word and its surrounding words.

sentence, as shown in Figure B.1. In this example, the aspect word “price” has positive sentiment
due to the word “reasonable” in the context. Similarly, for “service”, the context word “poor”
describes its negative sentiment. This reveals that the sentiment of aspect words heavily relies on
its position in a sentence and thus position embedding [27] is necessary. Such embedding creates
a probability distribution of the sentence based on the aspect word. Recently, position-aware
modelling has shown promising results on ABSA tasks [28].

Since TM requires binary inputs, to utilize TM for interpretability, the inputs must be
binarized. It is challenging to incorporate the required position-based word relations in binary
form, to allow for ABSA. In particular, since a TM does not employ any world knowledge like
Word2vec [29], Elmo [21] or BERT [20], so as to retain the interpretability of the model, we
reduce the size of vocabulary by replacing the sentiment carrying words with a common token.
Understandably, without pre-trained embeddings, a model cannot find the similarity between two
semantically related words such as “excellent” and “good”. Hence, we adopt Opinion Lexicon
[30], which is a list of English positive and negative sentiment words. In more details, we replace
every possible word in the dataset by the common token “positive” or “negative”, as shown in
Figure B.2. Such external knowledge also helps to reduce the vocabulary size thereby decreasing
the sparsity of BOW representations.

The	price	is	reasonable	although	the	service	is	poor.

The	price	is	positive	although	the	service	is	negative.

Figure B.2: Replacement of sentiment-carrying words with a common sentiment token using
Opinion Lexicon.

Once the vocabulary size is determined, the context word and the aspect word can be
converted into binary form, named as BOWcontext and BOWaspect respectively. Since BOW in
binary form does not consider the frequency of the replaced common tag (i.e., “positive” and
“negative”), it becomes a rough representation of those tokens. In order to determine the location
of these sentiment-carrying tokens, the sentence is split into two parts, divided by the aspect
word. More specifically, we create additional binary vectors LOC1

vec and LOC2
vec, representing

106

B

The	food	is	very	positive	and	the	place	is positive as	well.

The	food	is	very	positive	and	the is	positive	as	well.

Figure B.3: 3-bit input feature representing the location of common sentiment-carrying tokens:
negative, no sentiment, and positive.

Input	vector	=

n n 3 3 3 3dimension

Figure B.4: Construction of binary input by concatenating all the pre-processed features.

the location of the common tokens. The dimension of LOC1
vec and LOC2

vec is three (the 1st

bit: negative, the 2nd bit: no sentiment, the 3rd bit: positive) as shown in Figure B.3. LOC1
vec

represents the presence of the common tokens “positive” or “negative” in the first part. If there
are no sentiment tags, this is represented by “no sentiment”. Similarly, LOC2

vec represents the
presence of the common tokens in the second part.

After the pre-processing of inputs, we use SentiWordNet to obtain the sentiment score (SC) of
the 1st part and the 2nd part of the split sentence. This involvement of such additional knowledge
enrich the input information. We adopt the sentiment score in a 3-D binary form for each part of
the sentence. The SC vector SC1

vec for the 1st part of the context is given by Eq. (B.1). Similarly,
vector SC2

vec is utilized for the second part of the context.

SC1
vec =

[0, 0, 1](positive), if SC > 0,

[1, 0, 0](negative), if SC < 0,

[0, 1, 0](no sentiment), if SC = 0.

(B.1)

After processing all these binary representations, we concatenate them all to make a final input
vector of size (2n+ 12) as shown in Figure B.4.

B.3.2 The Tsetlin Machine Based ABSA

TM is a recent classification method that manipulates expressions in propositional logic based
on a team of Tsetlin Automata (TA) [11]. TA is a fixed structure deterministic automaton that
learns the optimal action from a set of actions suggested by the environment. In TM, each input
bit corresponds to two TAs, i.e., TA and TA’. TA controls the original bit of the input sample
whereas TA’ controls its negation. Here we use TA to represent a general Tsetlin automata that
can be a TA or a TA’. Each TA corresponds to one literal. A literal here indicates an input bit or
its negation. For example, if the bit represents the word “food”, TA controls “food” itself and

107

B

Action 1 Action 2

Penatly Reward

Figure B.5: The two-action TA and its transition in TM.

The food is very positive and the place is positive as well.

0, 1, 0, 0, 1, 0,, 0, 0, 1, 0, 0, 0, 1,, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1

Figure B.6: TA team forms a Clause Cj
i by either including or excluding the input features.

then TA’ handles “not food”. Any TA employed by a TM has two actions with 2N states in total,
as shown in Figure B.5. When it operates in states from 1 to N , action “exclude” is selected
while action “include” is adopted for states from N + 1 to 2N . For each iteration, a TA performs
“include” or “exclude” based on the current state. This in turn triggers a reward or penalty. If a
reward is received, the TA moves to the deeper side of the action whereas if it obtains a penalty,
it moves towards the center and eventually jumps to the other side of the action. Clearly, a TA,
through its actions, decides whether to include or exclude its corresponding literal.

TM has a novel game theoretic strategy that regulates a decentralized team of TAs. This
strategy guides the TAs to learn an arbitrarily complex propositional formula by including or
excluding certain literals. More specifically, the included literals, by the operation of conjunc-
tion, formulate clauses. Each clause, after training, is expected to capture a sub-pattern. The
overall pattern is decided by summing up the output of all clauses for any unknown input. The
architecture for ABSA using TM is shown in Figs. B.6 and B.7.

Let us consider the input feature as a vector with a vocabulary size of n words, which is
represented in BOW as Xs = [x1, x2, x3, ···, xn, ···, x2n, x2n+1, x2n+2, ···, x2n+12] with xk∈{0,1}
and k ∈ {1, . . . , 2n + 12}. Here, [x2n+1, x2n+2, x2n+3] and [x2n+4, x2n+5, x2n+6] represent
LOC1

vec and LOC2
vec respectively. Similarly, [x2n+7, x2n+8, x2n+9] and [x2n+10, x2n+11, x2n+12]

represent SC1
vec and SC2

vec respectively. Let q be the number of classes (q = 3 in ABSA task:
positive, neutral and negative). If a pattern has m sub-patterns, the pattern can be captured using

108

B

Argmax
Operator

y

Figure B.7: (a). The sum of the votes for the clauses offers a score for a particular class. (b).
Argmax operator decides the output class based on the score of the clauses in each class.

q ×m conjunctive clauses Cj
i , 1 ≤ j ≤ q, 1 ≤ i ≤ m:

Cj
i =

∧
k∈Iji

xk

 ∧

∧
k∈Īji

¬xk

 , (B.2)

where Iji and Īji are non-overlapping subsets of the input variable indices, I ij, Ī ij ⊆ {1, · · · , 2n+

12}, I ij ∩ Ī ij = ∅. The subsets decide which of the input variables take part in the clause, and
whether they are negated or not. The indices of input variables in I ij represent the literals that are
included as is, while the indices of input variables in Ī ij correspond to the negated ones. Among
m clauses in each class, clauses with odd indexes are assigned to positive polarity (+) whereas
those with even indices are assigned to negative polarity (-). The clauses with positive polarity
vote for the target class and those with the negative vote against it.

f j(Xs) = Σm−1
i=1,3,...C

j
i (Xs)− Σm

i=2,4,...C
j
i (Xs). (B.3)

For q number of classes, the final output y is given by the argmax operator to classify the
input based on the highest sum of votes, as shown in Eq. (B.4).

y = argmaxj
(
f j(Xs)

)
. (B.4)

B.3.3 The Learning Process of TM Based ABSA

In this section, we will detail the learning process of TM for the ABSA task. We explain the
learning process with a walk-through of a specific sample context: “The food is very good and
the place is clean as well”, using the aspect word “place” whose sentiment is to be predicted.
The context is first changed to “The food is very positive and the place is positive as well.”
For ease of explanation, we use the text word as a feature instead of the index in its binary
form. For additional features, we will use the index of the binary input so as to differentiate
the features that take part in classification. The indexes for additional features are LOC1

vec =
[2n + 1, 2n + 2, 2n + 3], LOC2

vec = [2n + 4, 2n + 5, 2n + 6]. Since the sentiment scores for
both the first part of the context (“The food is very good and the”) and that for the second part
(“is clean as well”) are greater than zero, we have SC1

vec =[2n+ 7, 2n+ 8, 2n+ 9]= [0,0,1], and
SC2

vec = [2n+ 10, 2n+ 11, 2n+ 12]= [0,0,1], according to Eq. (B.1).

109

B

Exclude Include IncludeExclude

1 2 101 102 200

foodc

positivec
2n+12veryc

wellc

placea
placec

2n+3wellc

thec

placea
2n+12

100 1 2 101 102 200100

Figure B.8: TAs with 100 states per action that learn whether to exclude or include a specific
word (or its negation), location of common token (or its negation) and the sentiment score
information (or its negation) in a clause at time step 1.

Exclude Include IncludeExclude

foodc

positivec

2n+12
veryc
wellc

placea

placec

2n+3wellc

thec

placea

2n+12

positivec
1 2 101 102 200100 1 2 101 102 200100

Figure B.9: TAs with 100 states per action that learn whether to exclude or include a specific
word (or its negation), location of common token (or its negation) and the sentiment score
information (or its negation) in a clause at time step t.

Figures B.8, B.9, and B.10 show the learning process of the ABSA task with the TM model.
The subscripts c and a in the figures represent the word from context and aspect respectively. The
TA or TA’ that received reward will move away from the center while those that received penalty
will move towards the center. In this way, the TA (or TA’) can be trained to either “include” or
“exclude” a word (or its negation), helping the clauses, which are composed by the literals, learn
different subpatterns. Consequently, the TM, composed by clauses, will gradually converge
to the intended pattern. The feedback (reward or penalty) given to the TM follows two types:
Type I and Type II feedback. Based on these feedback types, rewards or penalties are fed to the
TA for the training samples. Type I Feedback is activated when a given input feature is either
correctly assigned to the target sentiment (true positive) or mistakenly ignored (false negative).
This feedback provides two countering effects: (1) involving more literals from the sample to
refine the clauses; (2) trimming of the clauses by a factor specificity s that makes all clauses
eventually evaluate to 1. The s-parameter is also responsible for avoiding overfitting. Type II
Feedback is activated when an input feature is wrongly assigned to the target sentiment (false
positive). It is responsible for introducing literals that make the clause evaluate to false, every
time a false positive occurs. Type I Feedback and Type II Feedback are summarized in Tables
B.1 and B.2 respectively.

Let us consider an example: a clause C1
1 = [foodc∧¬positivec∧placec∧(2n+3)∧¬(2n+12)]

that is formed at time step t = 1, as shown in Figure B.8. Here, the time step indicates the
instant the clause is updated during training iterations. The clause is composed by a combination

110

B

Clause formed and its learning in each stepInput
features

Clause
Output

Feedback I

Feedback I

Feedback I

Feedback I

Feedback
type

Pred Class
for true

class = 1
time

Figure B.10: The illustration of the clause update until reaching to an intended pattern at time
step t.

Input
Clause 1 0
Literal 1 0 1 0

Include Literal
P(Reward) s−1

s
NA 0 0

P(Inaction) 1
s

NA s−1
s

s−1
s

P(Penalty) 0 NA 1
s

1
s

Exclude Literal
P(Reward) 0 1

s
1
s

1
s

P(Inaction) 1
s

s−1
s

s−1
s

s−1
s

P(Penalty) s−1
s

0 0 0

Table B.1: The Type I Feedback.

of literals that are “included” by its associated TAs. At the current step, the excluded literals
in this case (i.e, 2n+ 12, placea, thec, wellc) are controlled by TA, and the negated literals (i.e,
placea, veryc, wellc) are governed by TA’. Clearly, this clause evaluates to 0, thereby contributing
to predict class 0 despite the true class being 1, as shown in Figure B.10. This indeed triggers
the Type I feedback. With Type I feedback, the reward or penalty for each literals is decided by
Table B.1. Since the literal ¬positivec is included, its feature is 0 (¬1) and the clause output is
0. Therefore, it receives penalty for being included with the probability of 1

s
, making it slowly

move towards the center and eventually jumping to the side with action “exclude”. Similarly,
the literal ¬(2n + 12) also receives the penalty with probability 1

s
, making it slowly moving

towards the center, as well, eventually jumping to exclude action. Once this happens, the clause
C1

1 becomes [foodc ∧ placec ∧ (2n + 3)] as shown in time step t = 2 that outputs 1, making
a prediction of class 0 as depicted in Figure B.10. Table B.1 shows if the clause output is 1,
the literals are of value 1, and the actions of the literals are “excluded”, such literals obtain
inaction or penalty with probability 1

s
or s−1

s
respectively, making them slowly move towards

111

B

Input
Clause 1 0
Literal 1 0 1 0

Include Literal
P(Reward) 0 NA 0 0

P(Inaction) 1.0 NA 1.0 1.0

P(Penalty) 0 NA 0 0

Exclude Literal
P(Reward) 0 0 0 0

P(Inaction) 1.0 0 1.0 1.0

P(Penalty) 0 1.0 0 0

Table B.2: The Type II Feedback.

the center and eventually jump to “include” action. Once it happens, the clause becomes C1
1

= [foodc ∧ positivec ∧ placec ∧ (2n+ 3) ∧ (2n+ 12)] as shown in time step t = 3. Based on
reward and penalty, TM reaches to the intended pattern at time step t by the arrangement of
literals controlled by their respective TAs, as shown in Figure B.9. The final clause is given
by C1

1 = [foodc ∧ positivec ∧ placec ∧ (2n + 3) ∧ placea ∧ (2n + 12)]. The clause will still
obtain Type I feedback when more training samples are given and they reinforce the true positive
occurrences until the sum of the votes by these clauses reaches a threshold parameter T .

The overall training and testing processes of TM-based ABSA are summarized in Algorithm
1 and Algorithm 2 respectively. For conciseness, we present, in Algorithm 1, the training
procedure for the clauses with positive polarity, i.e., the clauses with odd index number. Clearly,
the feedback types for the negative ones are just opposite. The complete training approach of a
TM can be found in [11].

Once the class is predicted, we can explore its clauses for interpretability. The clauses that
are triggered (i.e., Cj

i (Xs,te) = 1) are explored and their literals are converted into the original
words for interpretation with the help of the additional information like LOC1

vec, LOC2
vec, SC

1
vec,

or SC2
vec.

B.4 Experiment Results

B.4.1 Datasets

The datasets are obtained from SemEval-2014 Task 4. The task has two domain-specific datasets,
namely, Restaurant 14 (res14) and Laptop 14 (lap14). These datasets are provided with training
and testing data. The statistics of the two datasets is shown in Table B.3. The code and the
datasets are available online1.

1https://github.com/rohanky/tm_absa

112

https://github.com/rohanky/tm_absa

B

Algorithm 1 Training Process of TM based ABSA
Require: Given Input = [Context sentence, Aspect Word, Sentiment Score]

1: Pre-processed Input = Concat(BOWcontext, BOWaspect, LOC1
vec, LOC2

vec, SC
1
vec, SC

2
vec)

2: Final Input: Xs,tr = [x1, · · · , xn, · · · , x2n, · · · , x2n+12] and y ▷ y is the label of the input
sample

3: Output: trained TM.
4: for Each training sample do
5: ŷ = TM(Xs,tr, T , s) ▷ Current sentiment estimate for the input sample
6: if y = 1 then:
7: for each clause Cj

i with odd index do
8: Use Type I Feedback(Xs,tr, ŷ, T , Cj

i , s) to update all Tsetlin automata in Cj
i .

9: end for
10: else ▷ if y = 0

11: for each clause Cj
i with odd index do

12: Use Type II Feedback(Xs,tr, ŷ, T , Cj
i , s) to update all Tsetlin automata Cj

i .
13: end for
14: end if
15: end for
16: return Trained TM.

Algorithm 2 Testing Process of TM based ABSA
Require: Given Input = Xs,te

1: Output: predicted class
2: f j(Xs,te)= 0, for all j
3: for all j do ▷ For all classes
4: for all i in class j do ▷ For all clauses in this class
5: f j(Xs,te) = f j(Xs,te)+(−1)i+1Cj

i (Xs,te)

6: end for
7: end for
8: return argmaxjf

j(Xs,te)

B.4.2 Baselines

In our experiment, we evaluate the proposed method and compare it with related approaches for
ABSA as baselines.

• ContextAvg averages the word embedding to form a context embedding [16].

• LSTM uses the last hidden vector of the LSTM for classification [31].

• TD-LSTM utilizes two LSTMs to learn the language model from the left and the right
contexts of the aspect [16].

• ATAE-BiLSTM is an attention-based LSTM with Aspect Embedding model [32].

113

B

Dataset Positive Negative Neutral Total
res14 (train) 2164 807 637 3608
res14 (test) 728 196 196 1120
lap14 (train) 994 870 464 2238
lap14 (test) 341 128 169 638

Table B.3: The statistics of SemEval-2014 dataset.

• MemNet integrates the content and the position of the aspect word into a deep neural
network [16].

• RAM is a multi-layer architecture where each layer consists of attention-based aggregation
of word features and a GRU cell [33].

• IAN is an Interactive Attention Network model that calculates the attention weights of the
word in its sentiment and aspect interactively [3].

• PRET+MULT uses two approaches of transfer knowledge from document level using
pretraining and multitask training [34].

• HCSN proposes a Human-like Semantic Cognition network for the ABSA task, motivated
by the human beings’ reading cognitive process [23]. We show that performance of our
proposed scheme is quite similar to this technique with high interpretability.

• TNet employs a CNN layer instead of attention layer to extract features from the trans-
formed word representations originated from a bi-directional RNN layer [35].

• AGDT is an Aspect-Guided Deep Transition model that uses the given aspect to direct the
sentence encoding from scratch with specially designed deep transition architecture. This
model generates the aspect-based sentence representation and hence predicts sentiment
more accurately [36].

B.4.3 Results

In our experiment, the main selling-point of the architecture is transparent learning and inter-
pretability rather than accuracy. Better accuracy may be achieved when grid search is adopted.
As we have used the integer weighted TM [37], the parameters available are the number of
clauses, the threshold T , and the specificity s, which are configured as 700, 90 × 100, and 15

respectively for both datasets. For pre-processing of text, we substitute the short form to its full
form, such as “isn’t” to “is not”. Additionally, we stem the words to reduce the vocabulary size
created due to spelling mistakes and variants of words2. The remaining pre-processing procedure
has already been explained before. We train the TM model on both the datasets for 100 epochs
each.

Since the output sentiment label has imbalanced training samples, we use two evaluation
metrics: Accuracy and Macro-F1 [38]. Following most of the related studied within the ABSA

2In this work, we adopt the Porter Stemmer.

114

B

Methods
Restaurant 14 Laptop 14

Accuracy Macro-F1 Accuracy Macro-F1
ContextAvg 71.5 58.0 61.5 53.9
LSTM 74.3 63.0 66.5 60.1
TD-LSTM 75.6 64.5 68.1 63.9
ATAE-BiLSTM 77.6 65.3 68.7 64.2
MemNet 76.9 66.4 68.9 62.8
RAM 78.5 68.5 72.1 68.4
IAN 78.6 NA 72.1 NA
PRET+MULT 79.1 69.7 71.2 67.5
HCSN 77.8 70.2 76.1 72.5
TNet 80.79 70.84 76.01 71.47
AGDT 78.85 NA 71.50 NA

TM based ABSA
78.02 67.85 73.51 70.82
(76.40 ± 1.0) (64.01 ± 0.8) (71.47 ± 0.9) (67.48 ± 1.5)

Table B.4: Experiment results of various approaches for SemEval-2014 dataset. The upper
results show the best reproducible accuracy and lower ones represent the mean and standard
deviation of the last 50 epochs when running the model for five times.

task, we report the best reproducible results by running the ABSA TM for 100 epochs, as shown
in Table B.4. We have reported the highest reproducible accuracy along with its mean and
standard deviation obtained during 5 experiments. As we can see, Context2vec and LSTM
perform quite poorly as they do not consider the aspect information when deciding the sentiment
polarity. However, due to the consideration of left and right context information, TD-LSTM
performs slightly better than LSTM. The variants of attention perform consistently better than
LSTM and TD-LSTM. This is due to the fact that attention captures important information with
regard to the aspect word. Other methods like RAM and MemNet perform slightly better because
of the integrated memory in sentiment modeling. Another kind of the neural network-based
model is HCSN. HCSN utilizes a human-being-like cognitive network for ABSA, which is
motivated by the principles of human beings’ reading cognitive processes. Its pre-reading, active
reading, and post-reading technique mimics the human behavior, which is then fed to the GRU
network. As interesting as it seems, the involvement of the neural network still brings this
below human-level interpretation on what drives the model to make the decision. Our model,
which offers a transparent view of the learning process, obtains quite similar or higher accuracy
compared to HCSN and PRET+MULT techniques. However, the TNet architecture with a CNN
layer, which extracts salient features from transformed word representation, achieves higher
accuracy compared to TM. AGDT is a model that uses Aspect guided GRU along with Max
pooling to obtain Aspect Concatenated Embedding. It obtains quite similar accuracy compared
to TM on Restaurant 14, whereas accuracy is lower on Laptop 14. Note that we do not use
any pre-trained word2vec or glove embedding for TM and our model still performs better than
LSTM, TD-LSTM as well as attention based BilSTM for both datasets. The Macro-F1 score
shows that TM does not only greedily learn a particular class but also creates a set of features for
each and every class. Even though the performance of our proposed model does not outperform

115

B

the state-of-the-arts models, it reaches to comparable accuracy and Macro-F1 with transparent
learning and interpretable prediction.

In addition to the above comparisons, we demonstrate here the necessity of including
both LOCs and SCs vectors. First we only used the LOCs in the model and observed that
the accuracy of the model reaches 76.51%. Secondly, we replaced LOCs with SCs and the
performance of the model decreased to 75%. This shows that both vectors add useful information
when employed together thereby reaching the stated accuracy of 78.02%.

To compare the performance of TM with classical interpretable models such as Logistic
Regression (LR), we use our preprocessed BOW as input to LR. We observed that the TM
performs better than LR in terms of accuracy. LR obtains the accuracy of 75.38% as compared
with TM’s 78.02% on the Restaurant 14 dataset. Indeed, those two approaches operate based
on different concepts. LR is trained by adjusting weights and bias. TMs, on the other hand,
relates words using propositional logic to represent a class. Employing propositional logic for
knowledge representation provides rules rather than a mathematical computation. This crucial
difference between a rule-based approach and regression methods is explored in [39]. One can
analyze why a LR model assigns a particular class to an input by inspecting the weights and bias.
However, assigning them meanings requires understanding of the mathematical computation that
LR carries out. Since TM creates a list of patterns for a particular class based on the interaction of
aspect words and the sentiment words in the context, its conjunctive clauses hold information of
words in a rule-based form. It is well-known that evaluating a conjunctive clause is particularly
easy for humans, making them natively interpretable and easier to explain than LR.

B.5 Interpretability and Analysis

B.5.1 Characteristics of Clauses

In this section, we will explain one phenomenon of a TM after training with the datasets. When
analyzing the clauses after training, we noticed that the TM employs more negated literals to
form a clause. This is a bit counter intuitive as there should be, intuitively, more literals in their
original forms than their negations in a clause. To explain this behavior, let us study two general
sentences having positive sentiments for aspect word “laptop”:

• This laptop is in excellent condition.

• Battery life of this laptop is better compared to other brands.

In this example, we assume a vocabulary containing both positive and negative sentiment words
of size 6, V = [excellent, bad, condition, worst, costly, better, laptop]. When literals in their
original forms are utilized to compose a clause, the two sentences require two clauses to follow
the sentiment, i.e., C1 = [laptop ∧ excellent ∧ condition] and C2 = [battery ∧ better ∧
laptop∧others]. On the contrary, when negated form of literals are employed, only one clause is
sufficient to satisfy the sentiment in both sentences: C1 = [laptop ∧ ¬bad ∧ ¬worst ∧ ¬costly].
As the negation is a more efficient way to represent a pattern in NLP, the trained TM employs
naturally more negated literals to form a clause.

116

B

Looks AND nice AND (not other words in the
vocabulary) looks positive

horribly AND feel AND (not other words in the
vocabulary) feel negative

Looks nice, but has a horribly cheap feel.

Figure B.11: Interpretation of a randomly selected sample from ABSA task.

B.5.2 A Case Study for Interpretability

In this case study, we demonstrate the interpretable result from trained model. We randomly
select a sentence from the dataset as an example and demonstrate its literals that are responsible
to form the clause. The selected sentence is “Looks nice, but has a horribly cheap feel.” with
a aspect word “looks” whose sentiment prediction of TM is positive. The sentence after pre-
processing becomes “Looks positive, but has a negative negative feel.” Among various clauses
that are triggered by the given input, we randomly select a clause for interpretation. The clause
is given by:

• Cj
i = positive ∧ (2n+ 6) ∧ ¬(words not in the sentence and aspect).

The above clause can be interpreted as: the aspect word “looks” has positive sentiment
because it has words “positive” and it lies in the second part of the sentence (indicated by 2n+6,
i.e., LOC2

vec = [0, 0, 1]) when split from aspect word “looks”. Similarly, if the aspect word in the
sentence is “feel” then its sentiment is predicted to be negative and a randomly selected clause is:

• Cj
i = negative ∧ (2n+ 1) ∧ ¬(words not in the sentence and aspect).

This clause means that the sentiment is negative because it has words like “negative” and it lies
in the first part of the sentence (indicated by 2n + 1, i.e LOC1

vec = [1, 0, 0]) when split from
aspect word “feel”. In both the cases, ¬(words not in the sentence and aspect) represents the
words in negated form that are presented in the input features. Finally, reversing back all the
information and binarization to the original form of the words, we can obtain interpretation that
shows the influence of words in the classification as in Figure B.11.

B.6 Conclusions

In this paper, we aim to reduce the gap between the interpretability and the accuracy of aspect
based sentiment analysis (ABSA) by employing the recently introduced Tsetlin Machine (TM).
Our proposed model embeds the aspect-based inputs into binary form for classifying the sen-
timent of a particular word in a sentence. Such binary representations are then fed to a TM
architecture where the learning process is transparent, which gives a clear picture of what actually
drives the TM to learn the particular sentiment for a given input. Additionally, we show the

117

B

involvement of words carrying the sentiment for the aspect words in the case study. In short, the
proposed model successfully provides an human-interpretable learning approach on ABSA task
with comparable accuracy.

118

B

Bibliography

[1] L. Zhang and B. Liu, Sentiment Analysis and Opinion Mining, pp. 1152–1161. Boston,
MA: Springer US, 2017.

[2] M. Pontiki, D. Galanis, J. Pavlopoulos, H. Papageorgiou, I. Androutsopoulos, and S. Man-
andhar, “SemEval-2014 task 4: Aspect based sentiment analysis,” in International Work-
shop on Semantic Evaluation (SemEval 2014), (Dublin, Ireland), pp. 27–35, ACL, 2014.

[3] D. Ma, S. Li, X. Zhang, and H. Wang, “Interactive attention networks for aspect-level
sentiment classification,” in IJCAI, (Melbourne, Australia), pp. 4068–4074, 2017.

[4] H. H. Do, P. Prasad, A. Maag, and A. Alsadoon, “Deep learning for aspect-based sentiment
analysis: A comparative review,” Expert Systems with Applications, vol. 118, pp. 272–299,
2019.

[5] W. Samek, G. Montavon, A. Vedaldi, L. Hansen, and K. Müller, Explainable AI: Interpret-
ing, Explaining and Visualizing Deep Learning. Springer, 2019.

[6] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to
align and translate,” in ICLR, (California, USA), 2015.

[7] S. Serrano and N. A. Smith, “Is attention interpretable?,” in ACL, (Florence, Italy), pp. 2931–
2951, ACL, 2019.

[8] S. Wiegreffe and Y. Pinter, “Attention is not not explanation,” in EMNLP-IJCNLP, (Hong
Kong, China), pp. 11–20, ACL, 2019.

[9] G. Brunner, Y. Liu, D. Pascual, O. Richter, M. Ciaramita, and R. Wattenhofer, “On
identifiability in transformers,” in ICLR, (Addis Ababa, Ethiopia), 2020.

[10] S. Vashishth, S. Upadhyay, G. S. Tomar, and M. Faruqui, “Attention interpretability across
NLP tasks,” arXiv, vol. 1909.11218, 2019.

[11] O.-C. Granmo, “The tsetlin machine - a game theoretic bandit driven approach to optimal
pattern recognition with propositional logic,” ArXiv, vol. abs/1804.01508, 2018.

[12] A. Esuli and F. Sebastiani, “Sentiwordnet: A publicly available lexical resource for opinion
mining,” in LREC, (Genoa - Italy), 2006.

[13] L. Jiang, M. Yu, M. Zhou, X. Liu, and T. Zhao, “Target-dependent Twitter sentiment
classification,” in ACL, (Portland, Oregon, USA), pp. 151–160, ACL, 2011.

[14] S. Kiritchenko, X. Zhu, C. Cherry, and S. Mohammad, “NRC-Canada-2014: Detect-
ing aspects and sentiment in customer reviews,” in International Workshop on Semantic
Evaluation (SemEval 2014), (Dublin, Ireland), pp. 437–442, ACL, 2014.

[15] T. Shen, T. Zhou, G. Long, J. Jiang, S. Pan, and C. Zhang, “Disan: Directional self-attention
network for rnn/cnn-free language understanding,” in AAAI, (New Orleans, USA), 2018.

119

B

[16] D. Tang, B. Qin, and T. Liu, “Aspect level sentiment classification with deep memory
network,” in EMNLP, (Austin, Texas), pp. 214–224, ACL, 2016.

[17] J. Liu and Y. Zhang, “Attention modeling for targeted sentiment,” in EACL, (Valencia,
Spain), pp. 572–577, ACL, 2017.

[18] D. Tang, B. Qin, X. Feng, and T. Liu, “Effective LSTMs for target-dependent sentiment
classification,” in COLING, (Osaka, Japan), pp. 3298–3307, ACL, 2016.

[19] Y. Zheng, R. Zhang, S. Mensah, and Y. yi Mao, “Replicate, walk, and stop on syntax: An
effective neural network model for aspect-level sentiment classification,” in AAAI, (New
York, USA), 2020.

[20] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirec-
tional transformers for language understanding,” in NAACL, (Minneapolis, Minnesota),
pp. 4171–4186, ACL, 2019.

[21] M. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer, “Deep
contextualized word representations,” in NAACL, (New Orleans, Louisiana), pp. 2227–2237,
ACL, 2018.

[22] C. Rudin, “”stop explaining black box machine learning models for high stakes decisions
and use interpretable models instead”,” Nature Machine Intelligence, vol. 1, pp. 206–215,
2018.

[23] Z. Lei, Y. Yang, M. Yang, W. Zhao, J. Guo, and Y. Liu, “A human-like semantic cognition
network for aspect-level sentiment classification,” in AAAI, (Hawaii, USA), 2019.

[24] X. Zhang, L. Jiao, O.-C. Granmo, and M. Goodwin, “On the convergence of tsetlin
machines for the identity- and not operators,” arXiv, vol. 2007.14268, 2020.

[25] O.-C. Granmo, S. Glimsdal, L. Jiao, M. Goodwin, C. W. Omlin, and G. T. Berge, “The
convolutional tsetlin machine,” arXiv, vol. 1905.09688, 2019.

[26] G. T. Berge, O.-C. Granmo, T. O. Tveit, M. Goodwin, L. Jiao, and B. V. Matheussen, “Using
the tsetlin machine to learn human-interpretable rules for high-accuracy text categorization
with medical applications,” IEEE Access, vol. 7, pp. 115134–115146, 2019.

[27] S. Gu, L. Zhang, Y. Hou, and Y. Song, “A position-aware bidirectional attention network for
aspect-level sentiment analysis,” in COLING, (Santa Fe, New Mexico, USA), pp. 774–784,
ACL, 2018.

[28] J. Zhou, Q. Chen, X. Huang, Q. Hu, and L. He, “Position-aware hierarchical transfer model
for aspect-level sentiment classification,” Information Sciences, vol. 513, pp. 1–16, 2020.

[29] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed representations
of words and phrases and their compositionality,” in NIPS, (Stateline, United States), Curran
Associates, Inc., 2013.

120

[30] M. Hu and B. Liu, “Mining and summarizing customer reviews,” in ACM SIGKDD, (New
York, NY, USA), p. 168–177, ACM, 2004.

[31] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9,
pp. 1735–1780, 1997.

[32] Y. Wang, M. Huang, X. Zhu, and L. Zhao, “Attention-based LSTM for aspect-level senti-
ment classification,” in EMNLP, (Austin, Texas), pp. 606–615, ACL, 2016.

[33] P. Chen, Z. Sun, L. Bing, and W. Yang, “Recurrent attention network on memory for aspect
sentiment analysis,” in EMNLP, (Copenhagen, Denmark), pp. 452–461, ACL, 2017.

[34] R. He, W. S. Lee, H. T. Ng, and D. Dahlmeier, “Exploiting document knowledge for
aspect-level sentiment classification,” in ACL, (Melbourne, Australia), pp. 579–585, ACL,
2018.

[35] X. Li, L. Bing, W. Lam, and B. Shi, “Transformation networks for target-oriented sentiment
classification,” in ACL, (Melbourne, Australia), pp. 946–956, ACL, 2018.

[36] Y. Liang, F. Meng, J. Zhang, J. Xu, Y. Chen, and J. Zhou, “A novel aspect-guided deep
transition model for aspect based sentiment analysis,” in EMNLP-IJCNLP, (Hong Kong,
China), pp. 5569–5580, ACL, 2019.

[37] K. D. Abeyrathna, O.-C. Granmo, and M. Goodwin, “Extending the tsetlin machine with
integer-weighted clauses for increased interpretability,” arXiv, vol. 2005.05131, 2020.

[38] C. D. Manning and H. Schütze, “Foundations of statistical natural language processing,” in
SGMD, 2002.

[39] M. Haghighi, S. Johnson, X. Qian, K. Lynch, K. Vehik, and a. T. S. G. S. Huang, “A
comparison of rule-based analysis with regression methods in understanding the risk factors
for study withdrawal in a pediatric study,” Scientific Reports, vol. 6, 2016.

121

C

Appendix C

Paper C

Title: Positionless Aspect based Sentiment Analysis Using Attention
Mechanism

Authors: Rohan Kumar Yadav, Lei Jiao, Ole-Christoffer Granmo, and
Morten Goodwin

Affiliation: University of Agder, Faculty of Engineering and Science, 4879,
Grimstad, Norway

Journal: Knowledge-based System, Elsevier, May, 2021.
DOI: 10.1016/j.knosys.2021.107136.

123

https://doi.org/10.1016/j.knosys.2021.107136

C

C

Positionless Aspect based Sentiment Analysis using Attention
Mechanism

Rohan Kumar Yadav, Lei Jiao, Ole-Christoffer Granmo, and Morten Goodwin
Department of Information and Communication Technology

Faculty of Engineering and Science, University of Agder
4879, Grimstad, Norway

E-mails: {rohan.k.yadav, lei.jiao, ole.granmo, morten.goodwi}@uia.no

Abstract — Aspect-based sentiment analysis (ABSA) aims at identifying fine-grained polar-
ity of opinion associated with a given aspect word. Several existing articles demonstrated
promising ABSA accuracy using positional embedding to show the relationship between
an aspect word and its context. In most cases, the positional embedding depends on
the distance between the aspect word and the remaining words in the context, known
as the position index sequence. However, these techniques usually employ both complex
preprocessing approaches with additional trainable positional embedding and complex
architectures to obtain the state-of-the-art performance. In this paper, we simplify pre-
processing by including polarity lexicon replacement and masking techniques that carry
the information of the aspect word’s position and eliminate the positional embedding. We
then adopt a novel and concise architecture using two Bidirectional GRU along with an
attention layer to classify the aspect based on its context words. Experiment results show
that the simplified preprocessing and the concise architecture significantly improve the
accuracy of the publicly available ABSA datasets, obtaining 81.37%, 75.39%, 80.88%, and
89.30% in restaurant 14, laptop 14, restaurant 15, and restaurant 16 respectively.

125

C

C.1 Introduction

Aspect-based sentiment analysis (ABSA) is one of the sentiment analysis that aims to identify
the polarity of aspect word associated with its context. It has been categorized as a standard
evaluation framework for fine-grained sentiment analysis [1]. Among various aspect-based
sentiment classification problems, we focus, in this study, on the task that is to map the polarity
of the opinion on a aspect word into one of the following potential sentiments, namely, positive,
neutral, or negative. For instance, the sentence “great food but the service was dreadful.” has an
aspect word “food” having a positive polarity and another aspect word “service” having a negative
polarity in this context. ABSA includes various tasks including identification, classification, and
aggregation. Most of the existing studies formulate ABSA as a classification problem where the
information of aspect word is integrated [2]. Following the same stream of research, we also
focus on the sentiment classification [3] in this article.

ABSA can be a quite challenging classification problem because of the ambiguity of sentiment
in the sentence. The context-based feature usually plays an important role in the classification of
sentiment, which introduces the hypothesis that the understanding of a word is mostly dependent
on the context words and their locations. Hence both context words, as well as the position of the
aspect word, become important features for sentiment classification [4, 5]. Understandably, even
human beings spontaneously search for context words to evaluate the sentiment of a word when
we read an article. This naturally makes the context and the position information vital features to
be embedded into the deep learning model for better performance.

Various neural network architectures, from simple to complex ones, have been developed
for position-aware sentiment classifications with a focus on the aspect word [6, 7]. A position
encoding vector developed in [8] has been a popular choice for embedding positional information
in Long Short term Memory (LSTM) based models. There the position index of the surrounding
words is represented by the relative distance to the aspect word. Such position embedding
creates a probability distribution among the context that is then embedded along with the word
embedding of each word for classification of sentiments. However, a sophisticated neural
network architecture is required for good performance because of the lack of sentiment lexicon
knowledge with the integration of positional embedding [9]. Even a slight increment of accuracy
in ABSA task usually requires a more complex architecture [10].

In this paper, we propose a very simple preprocessing of ABSA task by using sentiment
lexicons and a masking technique that removes complex positional embedding thereby requiring a
very straightforward architecture to obtain the state-of-the-art performance. As we know, human
being usually makes sentiment classification of a particular word based on the surrounding
words. Besides, human being, most probably, understands the meaning of each word and the
sentiment associated with it as a priori. On the contrary, a neural network does not have this
inbuilt knowledge. Even though various pre-trained word embedding captures the semantic
relationship among the words, they are usually complicated. Therefore, it is important to find an
efficient way to offer the model necessary knowledge, as priori, as much as possible. To give
the model extra knowledge about sentiment in a simple way, we employ Opinion Lexicon [11]
that has a list of positive and negative sentiment words. We use these lexicons and replace
all the possible positive words with the “positive” tokens and negative words with “negative”
tokens. The words that are not in the Opinion Lexicon will be left as they are. Additionally, to

126

C

avoid complex positional embedding, the aspect word is masked with a common token, making
it a Masked Aspect Embedding and the original sentence as Sentence Embedding. Then, we
adopt the Attention-based Bidirectional Gated Recurrent Unit (BiGRU) to train both the input to
classify the sentiment of the masked aspect word. To evaluate the performance of the proposed
methodology, we experiment with all available restaurant and laptop datasets of the ABSA task
[12, 13, 14]. The numerical results show that the proposed scheme obtains either similar or
higher accuracy compared with the state-of-the-art solutions that use positional embedding and a
complex architecture.

The main contributions of the paper are summarized as follows:

1. Mask aspect words with common token and use it as aspect embedding along with original
sentence embedding thereby removing the complex positional embedding.

2. Propose a very straightforward Attention based BiGRU architecture that performs either
similar or better than the comparable state-of-the-art solutions.

The rest of the paper is organized as follows. We review related studies in Section 2. The
proposed preprocessing and deep learning architecture are described in detail in Section 3. In
Section 4, we show the experiment results and reveal the benefits of proposed schemes before
concluding the paper in Section 5.

C.2 Related Work

This section consists of three parts. The first part includes the related studies on sentiment analysis
in general. The second part surveys, in brief, ABSA tasks based on LSTM as encoder [15].
The last part reviews the attention based ABSA models that highly depend on the positional
embedding [16].

C.2.1 Sentiment Analysis

Sentiment Analysis is a task involving polarity detection, subjectivity/objectivity identification
as well as multi-modal fusion [17]. Sentiment analysis can be carried out in different levels,
such as in document, sentence, or aspect level [18]. For document-level sentiment analysis,
the goal is to detect the polarity of the whole document irrespective of any mentioned aspects.
Tripathy et al. explored various machine learning algorithms on IMDB and polarity dataset
demonstrating document level sentiment classification [19]. Other several large dataset has been
explored to show that the character-level convolution networks could achieve state-of-the-art
result [20]. A Linguistically Regularized LSTM is another variant of deep neural networks that
can achieve competitive performance [21]. On the other hand, for sentence-level sentiment
analysis, it has been developed in [22] a Bidirectional Emotional Recurrent Unit (BiERU)
for Conversational Sentiment Analysis using generalized neural tensor block followed by a
two-channel classifier. Various sentiment analysis tasks usually focus on analyzing data at the
aggregate level, merely providing a binary classification (positive vs. negative), which does
not account for finer characterization of emotion involved. On the contrary, a Multi-Level
Fine-Scaled Sentiment Sensing with Ambivalence Handling is proposed for analyzing fine scale

127

C

of both positive or negative sentiments [23]. Such fine-grained sentiment classification mostly
relies of the the weightage of word in the context.

Recently, the attention mechanism has shown promising performance in natural language
processing (NLP) tasks, which improves deep neural network by letting them learn about where
to focus. Recent studies on attention-based sentiment analysis are exampled by [24, 25, 26]. One
of the applications of attention mechanism is the Attention-based Bidirectional CNN-RNN Deep
Model (ABCDM) that extracts both past and future contexts by considering temporal information
flow [27]. The attention mechanism in ABCDM is applied to the outputs of the bidirectional
layers to shift the emphasis more or less on various words. On the other hand, some sentiment
analysis studies focus not only on language modeling but also on common sense knowledge. For
example, in [28], SenticNet 6 is proposed, which integrates top-down and bottom-up learning
via an ensemble of symbolic and subsymbolic AI tools. However, these sentence-level sentiment
analyses cannot be directly applied to the ABSA task where the sentiment of the sentence holds
different opinions for distinct aspect words.

C.2.2 ABSA based on LSTM

ABSA tends to infer the polarity of a sentence’s sentiment towards a particular aspect word. The
sentiment may change throughout the sentence based on the context words. Hence, the main task
is to model the relationship between the aspect word and the context words in an efficient manner.
It is explained in [29] that around 40% classification error in this task is due to the ignorance
of the aspect word. This significantly increased interests in the studies including early work on
machine learning algorithms [30] that extracts a set of features to demonstrate the relationship
between them.

Neural networks, such as the LSTM network, can encode sentences without feature engi-
neering, and have been implemented in many (NLP) tasks [31, 32, 33]. In [34], TD-LSTM is
proposed, which consists of two dependent LSTMs to model the left and the right contexts di-
vided by the aspect word, where the aspect word is also input into the model as word embedding.
Similarly, Gated Neural Networks is designed to control the importance of left and right context
[35]. However, these methods do not capture the relationship between the context and the aspect
word because the divided sentence most probably contains only one aspect word. Since the
introduction of attention network on translation task [36, 37], many NLP tasks are interested to
employ attention mechanism to model the relationship between the words in the sentence that
seems very relevant to ABSA tasks. AE-LSTM adopts the attention mechanism to shift the focus
of the aspect word towards relative context words [38]. Another work, similar to AE-LSTM,
was proposed in [2] and it learns to interact between context words and aspect word based on
associative relationships. In this way, the model can resiliently focus on the correct context
words given the aspect word.

Although the attention mechanism has enhanced the efficiency of ABSA tasks, it simply pro-
cesses the aspect word using the average pooling method while computing the attention score for
the context. A typical drawback is that the performance suffers if the aspect consists of multiple
words. To solve this problem, it is designed in [39] an Interactive Attention Network (IAN) to
learn the attention representation for the context and the aspect word based on two different
attention models in parallel and combining them eventually for sentiment classification. While

128

C

IAN is an important work that considered context and aspect words’s interactive learning, it still
utilizes average vectors to calculate the attention score for both aspect word and context words.
In [40], it is presented a hierarchical model of attention for the task of aspect-based sentiment
analysis that included both attention at the aspect level and attention at the sentence level, where
the attention used in the aspect-level is a self-attention that takes the output of hidden layers as
the input. Moreover, several other studies use knowledge-based approaches to tackle the ABSA
task. It is proposed in [41] methods of rule-based ontology that constructed ontologies to help
improve the outcome of ABSA by using common domain information. Additionally, to guide the
model to learn relevant rules so that the model can capture more useful features, it is pertinent to
incorporate external information. Such rule based models are highly interpretable compared to
the neural network [42]. Those knowledge-based approaches, however, are very dependent on
the knowledge that they possess, which may be difficult to construct, and the knowledge rule
may also be intricate to design effectively through neural networks.

C.2.3 Positional embedding based ABSA

To enhance the classification accuracy in the ABSA task, the position information of the given
aspect word is integrated into the models [4, 5, 43]. These methods utilize position between
the aspect word and the context words either by counting the number of words between them
or using tree structure dependency as relevant information. With the concept that the context
word closer to the aspect word would be more important, attention mechanisms are preferred
in the memory-based models [44]. Similarly, it is employed in [4] the word distance between
the aspect word and the context word to mitigate the disadvantage of memory network [45].
The performance is further improved by scaling the input representation of the convolutional
layer with the positional relevance between the contexts and the aspect word, which helps
CNN feature extractor easily locate the sentiment indicators more accurately [5]. Another
position based ABSA task is represented in [6] where position-aware sentence representation is
applied by concatenating position embedding and word embedding. Similarly, it is proposed
in [46] a position-dependent method using position-aware attention and a deep bidirectional
LSTM (DBi-LSTM).

Despite the promising performance enhancement using positional embedding in ABSA tasks,
we observed that the model is usually very complex to obtain the best range of classification accu-
racy. Additionally, since the RNN models are good enough to capture the time series information,
encoding extra dimension as a position embedding seems a complicated preprocessing scheme.
Therefore, we propose a masking technique that replaces the aspect word with a common token
in the aspect embedding so that it creates different order information for distinct aspect words.
We incorporate this masked aspect embedding along with the original sentence embedding into
attention based Bi-GRU to capture the context-dependent sentiment, which is to be detailed in
the next section.

C.3 Proposed Method

In this section, we describe in detail the proposed prepossessing and architecture for the ABSA
task.

129

C

Figure C.1: Replacement of sentiment carrying word with a common tag using Opinion Lexicon.

C.3.1 Preprocessing

As mentioned earlier, the sentiment of aspect word highly depends on the context words sur-
rounding it. Human beings can understand the meaning and the sentiment of context words
that describe the aspect word. That is why human being can easily extract the sentiment of any
particular word. On the contrary, a neural network does not have the knowledge that shows the
semantic and syntactic relationship between words. Word2vec and Glove embedding [47, 48]
capture the semantic relationship between the words but they are still far from human efficiency.
Hence, we try to reduce the gap between the human knowledge and word embedding by making
the semantically related word as the same token. To simplify the problem so that the neural
networks can solve it better, we replace the sentiment-carrying words with the tag “positive” or
“negative” based on Opinion Lexicon [11] as shown in Fig. C.1. Opinion Lexicon is a list of
English words with positive or negative sentiment. Such use of external resource in preprocessing
not only integrates sentiment knowledge but also reduces the vocabulary size that is a substantial
concern by itself in NLP [49]. Altogether this process replaces around 550 words with the token
“positive” and “negative”.

Another important aspect of the preprocessing is to embed the position information of the
aspect word. Traditional positional embedding considers the relative distance between aspect
words and the context words in a sentence. Such embedding creates a probability distribution
over the sentence with respect to the aspect word. However, such position embedding integrated
with the input sentence is often initialized with trainable weights that increase the complexity of
the model [50]. To mitigate this problem, we propose a simple masking technique that is based
on the pattern learning behavior of the neural network. Usually, an ABSA task has two inputs:
Sentence Embedding carrying the original sentence where position information is integrated
and Aspect Embedding carrying aspect or aspect word. Here, we modify Aspect Embedding as
Masked Aspect Embedding that carries the sentence with the aspect word masked by a common
tag (here we call the common tag as “MASK”). We propose this preprocessing to remove the
positional embedding required by Sentence Embedding. The modification between existing
positional embedding and proposed masking technique is shown in Fig. C.2, where pos(w1) is
the relative positional encoding of the first word with respect to the aspect word and the total
number of words in the sentence is n. We hypothesize that the masked token is a common token
present in every sample at a different location, creates a positional pattern. Since any machine
learning model tries to capture the repetitive patterns, we hypothesize that the model will pick
the masked token and its necessary context words around it to classify the sentiment. In all
brevity, we propose a model that learns sentiment patterns for the position of the masked token.
The overall preprocessed input is shown in Fig. C.3.

130

C

Figure C.2: (a). Existing approach of position embedding. (b). Proposed masking technique to
learn pattern for the position.

Figure C.3: Proposed preprocessed input.

131

C

Figure C.4: Proposed Attention based Bi-GRU architecture.

C.3.2 Architecture description

The overall architecture of proposed model is shown in Fig. C.4, which consists 3 sections: Input
Embedding, Bi-GRU, and Attention Layer. As the input embedding has been explained in the
preprosessing part, we will focus on the latter two in the following paragraphs.

C.3.2.1 Bidirectional Gated Recurrent Unit (Bi-GRU)

Recurrent neural network (RNNs) [51] have been the baseline for NLP recently, where the
internal states are utilized to process data sequentially. However, RNNs have certain limitations
that lead to the development of their variants, such as LSTM and GRU. Here, we have explored
both LSTM and GRU for sequencing modeling. Since we aim at developing a very concise
and efficient model, we opt for GRU in our final architecture. The GRU controls the flow of
information like the LSTM unit without employing a memory unit, which makes it more efficient
with uncompromised performance compared to LSTM [52]. In addition, GRU mitigates the
problem of vanishing gradients and gradient explosions in vanilla RNN.

Our proposed model consists of two Attention-based Bi-GRUs: GRU1 for Sentence Em-
bedding and GRU2 for Masked Aspect Embedding. Both of them are identical in architecture
that has similar learning pattern with the same hyperparameters. The only difference is how

132

C

the preprocessed input data is passed to these two separate Bi-GRUs. We assumed that GRU2

captures the position of the masked token. Additionally, attention layer 2 gives the highest
weightage to the masked token wherever it presents in the sentence. Similarly, GRU1 is supposed
to capture the context features from Sentence Embedding with attention layer 1, assigning higher
weightage to the necessary context words. This hypothesis seems quite similar to how human
being operates to understand the aspect-based sentiment.

Define X = [x1, x2, x3, · · ·, xk] the Sentence Embedding (or Input 1), where k is the padded
length of the sentence embedding to the forward layer of the GRU. There are two kinds of
gates in GRU: the update gate and the reset gate. The update gate decides the amount of past
information that needs to be brought into the current state and how much the new information is
added. On the other hand, the reset gate takes care of how much information about the previous
steps is written into the current candidate state ht. Here, ht is the output of the GRU at time step
t and zt represents the update gate. At a particular time step t, the new state ht is given by:

ht = (1− zt)⊙ ht−1 + zt ⊙ ĥt, (C.1)

where ⊙ is the element-wise multiplication and ĥt is candidate activation. To update zt, we have

zt = σ (Wztxt + Uztht−1 + bzt) . (C.2)

Here, xt is the word of the sentence at time step t that is plugged into the network unit and it is
multiplied with its own weight Wzt . Similarly, ht−1 holds the information of the previous unit
and is multiplied with its own weight Uzt and bzt is the bias associated with update state. The
current state ht can be updated using reset gate rt by

ĥt = tanh (Whxt + rt ⊙ (Uhht) + bh) . (C.3)

where Wh and Uh are weights associated with the candidate activation along with bais bh.
At rt, the candidate state of step t can get the information of input xt and the status of ht−1

of step t− 1. The update function of rt is given by

rt = σ (Wrtxt + Urtht−1 + brt) , (C.4)

where Wrt and Urt are the weights associated with the reset state and brt is the bias.

The Bi-GRU contains the forward GRU layer (
→
ht) that reads the input sentence from step 0

to t and the backward GRU (
←
ht).

→
ht =

→
GRU(xt), t ∈ [1, T], (C.5)

←
ht =

←
GRU(xt), t ∈ [T, 1], (C.6)

ht =
[→
ht,
←
ht

]
. (C.7)

133

C

C.3.2.2 Attention Layer

As we know that not all the words in the context have equal contribution for sentiment classifica-
tion, an attention layer is assigned to prioritize important words in the context. Attention layer 1
is wrapped on top of GRU1 to learn a weight α1

t for each hidden state ht obtained at time step t.
Since there are k inputs in the padded sequences, time step t will be from 1 to k. The weighting
vector for attention layer 1, α1

t = [α1
1, α

1
2, α

1
3, · · ·, α1

k] is calculated based on the output sequence
H = [h1, h2, h3, · · ·, hk]. The attention vector s1 for attention layer 1 is calculated based on the
weighted sum of these hidden states, as:

s1 =
k∑

t=1

(
α1
tht

)
, (C.8)

where the weighted parameter α1
t is calculated by:

α1
t =

exp
(
uT
t uw

)∑
t exp (u

T
t uw)

, (C.9)

and ut = tanh (Wwht + bw). Here Ww and ht are the weight matrices and bw represents the
bias. The parameter uw represents context vector that is different at each step, which is randomly
initialized and learned jointly during the training process.

Similarly, the attention layer 2 is wrapped on top of GRU2 for assigning weightage to the
masked token based on its position. The attention vector s2 for attention layer 2 is given by:

s2 =
k∑

t=1

(
α2
tht

)
. (C.10)

Finally, both of the attention layers are concatenated

s = Concatenate (s1, s2) . (C.11)

The concatenated layer is then sent to a fully connected layer and the softmax function generates
a probability over c class labels.

C.4 Experiment Results and Evaluations

In this section, we will present the experiment results of the proposed scheme in detail. We
conduct experiments on SemEval 2014 “restaurant” and “laptop”, SemEval 2015 “restaurant”
and SemEval 2016 “restaurant” dataset to verify the proposed hypothesis of lexicon addition
and position-less masking. Additionally, we will also show the analysis of how the lexicon
information and masking technique enhance the performance individually. We employ Keras
[53] to implement our model. Adam [54] is adopted as the models’ optimization method with
the learning rate of 1× e−3. We also utilize Dropout [55] as the regularization strategy and the
probability of Dropout is kept 0.6. Words are initialized with Glove [48] of 300-dimension word
embedding. The batch size is 128 and is run for 100 epochs in the test datasets for obtaining the
best results.

134

C

Dataset
Train Test

Pos Neu Neg Pos Neu Neg

Rest 14 2164 637 807 728 196 196
Lap 14 994 464 870 341 169 128
Rest 15 948 34 269 432 38 257
Rest 16 1289 63 457 474 29 123

Table C.1: Details of ABSA datasets.

C.4.1 Datasets

Our experiments are conducted on four publicly available ABSA datasets. Each sample of
every dataset is a single sentence of a product review with aspect word and the corresponding
sentiment label associated. While the datasets are given in the laptop domain by SemEval 2015
and SemEval 2016, they only contain the aspect category without the aspect word. The ”null”
aspect terms are excluded from the datasets, and the ”dispute” or more than one sentiment labels
are also excluded from the aspect terms in the analysis. The remaining sentences contain at least
one aspect of the word with a {positive, neutral, negative} sentiment tag. The numerical details
of the datasets are shown in Table C.1.

C.4.2 Compared Methods

To evaluate the performance of the proposed model on ABSA datasets, we consider the following
approaches as comparative models. These models are proper baselines for ABSA and they are
as close as possible to this work. Additionally, we have used the models that have exactly been
evaluated in these specific four datasets of ABSA.

• Feature+SVM extracts n-gram as a feature, parse feature, and lexicon features to train the
classifier [30].

• ContextAvg averages the word embedding to form a context embedding and then it is feed
to the softmax function along with aspect vector [45].

• LSTM uses the last hidden vector information of the LSTM as a sentence representation
for classifying aspect level sentiment [15].

• TD LSTM utilizes two LSTMs to learn the language model from left and right contexts
of the aspect respectively [45].

• ATAE BiLSTM This model is similar to our approach, which is an Attention-based LSTM
architecture with Aspect Embedding. It computes the aspect-specific weighted score of
each word according to the representation of the aspect. The sums of the LSTM hidden
outputs based on the attention weights are utilized to generate the sentence representation
for ABSA classification [38].

• IAN is an Interactive Attention Network model that calculates the attention weights of the
word in sentiment and aspect interactively to generate aspect and sentence representations
[39].

135

C

Dataset
Restaurant 14 Laptop 14 Restaurant 15 Restaurant 16

Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

Majority 65.00 26.26 53.45 23.22 54.74 23.58 72.36 29.99
Feature+SVM 80.16 - 70.49 - - - - -
ContextAvg 71.53 58.02 61.59 53.92 73.79 47.43 79.87 55.68

LSTM 74.49 59.32 66.51 59.44 75.40 53.30 80.67 54.53
TD LSTM 78.00 68.43 71.83 68.43 76.39 58.70 82.16 54.21

ATAE BiLSTM 77.63 64.97 69.61 63.04 77.40 54.29 86.01 60.32
IAN 77.35 64.77 69.58 61.08 78.07 51.89 85.44 56.51

MemNet 78.16 65.83 70.33 64.09 77.89 59.52 83.04 57.91
RAM 78.48 68.54 72.08 68.43 79.98 60.57 83.88 62.14

Ont+LCR-Rot-hop - - - - 80.60 - 88.00 -
PBAN 81.16 - 74.12 - - - - -
PAHT 79.29 68.49 75.71 69.55 80.86 60.76 85.81 67.11

MTKFN 79.47 68.08 73.43 69.12 80.67 58.38 88.28 66.15
BERTADA-base 84.92 76.93 77.69 72.60 - - - -
XLNetADA-base 85.84 78.35 79.89 77.78 - - - -
Proposed Model 81.37 72.06 75.39 70.50 80.88 62.48 89.30 66.93

Table C.2: The state-of-the-art performance of ABSA on four datasets.

• MemNet integrates the content and the position of the aspect word into deep neural
network [45].

• RAM is a multi-layer architecture where each layer consists of attention based aggregation
of word features. A GRU cell is used to learn the sentence representation [4].

• Ont+LCR-Rot-hop uses a lexicon domain ontology and a rotatory attention mechanism
to predict the sentiment of the aspect word [56].

• PBAN is a position-aware bidirectional attention network on bidirectional GRU. It also
uses the mean pool and dot product to embed the position information of aspect word into
sentence representation. It performs on par with the state of the art [6].

• PAHT is a position-aware hierarchical transfer model that models the position information
from multiple levels to enhance the ABSA performance by transferring hierarchical knowl-
edge from the resource-rich sentence-level sentiment classification (SSC) dataset [46].

• MTKFN is a Multi-source Textual Knowledge Fusing Network that incorporates knowl-
edge from multiple sources to enhance the performance of ABSA. It uses pre-trained
layers to extract contextual features and predicts the sentiment polarities. Additionally, it
uses the information of conjunctions that captures the relationship between clauses and
provides additional sentiment features [57].

• BERTADA-base is further trained on a domain-specific dataset and evaluated on the test
set from the same domain [58].

• XLNetADA-base model is like BERTADA-base except for adopting XLNet [58].

136

C

Dataset
Restaurant 14 Laptop 14 Restaurant 15 Restaurant 16

Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

Lexicon replacement 79.55 67.31 71.32 64.80 78.82 57.86 87.38 63.66
Masked aspect embedding 80.62 70.72 73.51 68.01 80.33 61.26 88.65 65.00

Table C.3: Effect of the proposed preprocessing on all four datasets.

C.4.3 Hardware configuration

The experiments are conducted on a Linux platform. The OS and GPU configuration of our
server is NVIDIA DGX Server Version 4.6.0 (GNU/Linux 4.15.0-121-generic x86 64). We have
used NVIDIA Tesla V100 SXM3 32 GB to train our model.

C.4.4 Performance Comparison and Analysis

The comparison of our proposed model with recent similar studies is shown in Table C.2. These
state-of-the-art studies are selected for comparison because they mostly depend on positional
embedding as well as complex architecture, which are more relevant to our proposed model.

Among the baseline models that depend on language modeling, LSTM performs poorly on
all four datasets. Above this lies ATAE BiLSTM that has poor performance considering the fact
that it utilizes the attention mechanism to model the aspect word. However, TD LSTM performs
better than the two models mentioned above because it considers both the left and right context
as an aspect rather than the entire sentence. Similarly, MemNet performs better than IAN but
it is not as good as RAM, because it does not use multiple attention mechanisms. Moreover,
PAHT and MTKFN that utilize the hierarchical transfer model and external knowledge fusion
respectively exhibit quite similar results as both of them are position-aware models. However,
our proposed model surpasses both of these recent models with a significant margin using a
much simpler architecture.

Among PBAN, PAHT and MTKFN, PBAN has higher accuracy than PAHT and MTKFN
that is quite similar model to our proposed architecture. Hence, we focus on PBAN more
than other listed models for comparison. PBAN that adopts two BiGRUs still falls behind in
performance compared with our model. As shown in Table C.2, PBAN achieves 81.16% accuracy
on restaurant 14 and 74.12% on laptop 14 dataset. However, it uses traditional embedding with
a more complex model than ours. On the other hand, by employing the Opinion lexicon and
masked aspect embedding, our model gives 81.37% and 75.39% accuracy on restaurant 14
and laptop 14 datasets respectively. Additionally, the macro-F1 score also outperforms the
above-mentioned models with a significant margin except for the restaurant 16 dataset where the
macro-F1 score is slightly below PAHT.

Even though the main aim of this paper is to design a simple yet effective model, to make a
comprehensive comparison, we would present the performance of some new transformer-based
models, such as BERTADA-base and XLNetADA-base approaches. It is quite obvious that this
sophisticated pre-trained contextualized embedding achieves the upper state-of-the-arts results by
using a softmax classifier. Since our model does not apply position embedding thereby reducing
the trainable parameters, our comparison is mostly focused on the position-dependent model as
explained before.

137

C

neg neu pos
Predicted labels

ne
g

ne
u

po
s

Tr
ue

 la
be

ls

135 29 32

29 93 74

33 20 675
100

200

300

400

500

600

Figure C.5: Confusion Matrix of restaurant 14 dataset.

neg neu pos
Predicted labels

ne
g

ne
u

po
s

Tr
ue

 la
be

ls

95 17 16

43 90 36

27 21 293
50

100

150

200

250

Figure C.6: Confusion Matrix of laptop 14 dataset.

C.4.5 Error and Sensitivity Analysis

Error analysis studies the impact of inaccuracy in the model for meaningful insight. In this study,
we demonstrate error analysis using the confusion matrix. The confusion matrices show the
relationship between the true and the predicted class as shown in Figs. C.5, C.6, C.7, and C.8.
It can be seen from the confusion matrix that our model slightly suffers to identify the neutral
sentiment. We believe that this may be because our model gives more focus to sentiment carrying
lexicon tokens such as “positive” and “negative”.

In addition to the accuracy of the model, we also explore the sensitivity of the model with
respect to input representations, detailed in the subsections below.

C.4.5.1 Effect of input representations

We here demonstrate the sensitivity of the model by changing the dimension of Glove input
representation as shown in Table C.4. One can observe that the dimensions of the glove vectors
have a significant impact on the performance of the model. However, the dimension of 200d and
300d does not have much difference except for restaurant 16 dataset. Hence, higher dimension
representation has more semantic impact that boosts the accuracy of the model.

138

C

neg neu pos
Predicted labels

ne
g

ne
u

po
s

Tr
ue

 la
be

ls

185 2 70

15 5 18

30 1 401
50

100

150

200

250

300

350

400

Figure C.7: Confusion Matrix of restaurant 15 dataset.

neg neu pos
Predicted labels

ne
g

ne
u

po
s

Tr
ue

 la
be

ls

102 2 19

12 5 12

32 2 440
50

100

150

200

250

300

350

400

Figure C.8: Confusion Matrix of restaurant 16 dataset.

Glove res14 lap14 res15 res16

glove.6B.50d 79.29 72.73 78.13 85.46
glove.6B.100d 80.18 72.29 78.82 86.42
glove.6B.200d 78.93 74.92 79.92 86.42
glove.6B.300d 79.73 73.67 80.33 86.26

glove.42B.300d 81.37 75.39 80.88 89.30
glove.840B.300d 80.00 74.14 79.09 87.54

Table C.4: Effect of various Glove vector for word representation on accuracy (%).

139

C

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
dropout rate

65

70

75

80

85

90

ac
cu

ra
cy

(%
)

res14
lap14
res15
res16

Figure C.9: Effect of dropout rate.

C.4.5.2 Effect of dropout rate

We here explore the effect of the dropout rate that is applied to the input of each layer of BiGRU.
For simplicity, we employ the same dropout for both BiGRU varying from 0.0 to 0.9. The results
of various dropout rates on the accuracy are shown in Fig. C.9. As we can see, the effect of
dropout does not affect accuracy significantly. The change in accuracy is less than 3% in all 4
datasets. However, the best result always occurs at the dropout of range 0.6 to 0.8.

C.4.5.3 Effect of Opinion Lexicon and Masked Aspect Embedding

To verify the efficiency of proposed preprocessing, we further evaluate the performance of
lexicon replacement and masking aspect words individually. The two main preprocessing used
in our paper are :

• Lexicon replacement using Opinion Lexicon where Input 1 is Sentence embedding and
Input 2 is aspect word embedding. (without masking aspect word)

• Masking aspect word where Input 1 is Sentence embedding and Input 2 is masked aspect
embedding. (without lexicon replacement)

The performance of the scheme under these two conditions is evaluated for all four datasets and
shown in Table C.3. As one can see, the effect of masking aspect word is significantly higher than
the lexicon replacement. This is because the masking technique carries the position information
into the model. On the contrary, the lexicon information helps to generalize the word and reduce
the vocabulary size hence it has lower influence on the accuracy compared with the masking
technique. Therefore, the lexicon replacement just boosts the final accuracy by a small margin.

C.4.6 Two-class sentiment classification

Some of the positional embedding based studies on ABSA also focus on the performance in
the binary classification of ABSA task, in which it neglects the neutral class and makes it a

140

C

Model Restaurant 14 Laptop 14

PBAN 91.67 87.81
Proposed Model 92.51 90.15

Table C.5: Comparison of binary classification on ABSA datasets.

binary classification as to predict positive or negative sentiment. Hence, we evaluate here the
performance of our proposed model in binary classification and compare it with a position
embedding based model [6]. The comparison is shown in Table C.5. We can see that our
proposed method significantly outperforms the traditional positional embedding technique on
both restaurant 14 and laptop 14 datasets.

Figure C.10: Visualization of two typical examples. The red color represents the attentive weight
of the word. A deeper color indicates a larger weight value.

C.4.7 Case studies

To have a detailed insight into why our proposed model performs better than the baselines
with a straightforward architecture, we sample two examples from the restaurant 16 dataset
and visualize attention heatmaps based on the trained model. Here we have two inputs for two
separate BiGRUs: one being the sentence itself and the other being the masked sentence. As
we have already discussed, the aspect words are masked with a common token, say “MASK”.
From Fig. C.10, we can see that the sentiment of the aspect word “food” is classified as positive
sentiment from our model. The original sentence is fed to GRU1 that has an attention layer 1 and
the Masked sentence is fed to GRU2 that has an attention layer 2. Here, attention layer 1 captures
the context words throughout the sentence whereas attention layer 2 pays high attention to the
masked token with weight narrowing down to important context words as shown in Fig. C.10.
In the first example, attention layer 2 shifts the attention weightage towards the masked token
“food” (the first half of the sentence) that highly depends on the context “incredible” for positive
sentiment. For the second example, attention layer 2 shifts the attention weightage towards the
masked token “lunch” (the second half of the sentence) whose sentiment depends on context

141

C

“inconsistent” for negative sentiment. This is a clear validation of our hypothesis that the
masked token will hold the position information without using any additional trainable positional
embedding. In all brevity, attention layer 1 assigns weightage to words in the sentence, and
attention layer 2 narrows down the weightage from these selected words to important context
words, carrying sentiment of the aspect word.

C.5 Conclusions

In this paper, we propose an efficient preprocessing scheme with an attention-based GRU model
for aspect-based sentiment analysis. We first explore sentiment knowledge called Opinion
Lexicon that is a list of positive, neutral, and negative sentiment words. In more detail, we
replaced the words in ABSA dataset with a common tag, such as “positive” for positive sentiment
words. This external input helps to bridge the gap from semantically related words to a certain
extent and reduces the task’s vocabulary. Since the ABSA is a position-dependent task, it requires
the information of position along with the sentence embedding or aspect embedding. The extra
trainable weights for position information increase the complexity of the model. To reduce the
complexity, we proposed a masking technique that masks the aspect word in the sentence with a
common token “MASK”. This masked embedding is separately passed to the model along with
the sentence embedding. Experimentally, we have shown that the proposed scheme performs
at par with the state of the art and it outperforms several position-aware methods with very
straightforward attention-based BiGRUs architecture.

142

C

Bibliography

[1] J. Zhao, K. Liu, and L. Xu, “Sentiment analysis: Mining opinions, sentiments, and emo-
tions,” Computational Linguistics, vol. 42, pp. 595–598, 2016.

[2] Y. Tay, L. A. Tuan, and S. C. Hui, “Learning to attend via word-aspect associative fusion
for aspect-based sentiment analysis,” in AAAI, New Orleans, Louisiana, USA, 2018.

[3] K. Schouten and F. Frasincar, “Survey on aspect-level sentiment analysis,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. 28, no. 3, pp. 813–830, 2016.

[4] P. Chen, Z. Sun, L. Bing, and W. Yang, “Recurrent attention network on memory for aspect
sentiment analysis,” in EMNLP, (Copenhagen, Denmark), pp. 452–461, ACL, Sept. 2017.

[5] X. Li, L. Bing, W. Lam, and B. Shi, “Transformation networks for target-oriented sentiment
classification,” in ACL, (Melbourne, Australia), pp. 946–956, ACL, July 2018.

[6] S. Gu, L. Zhang, Y. Hou, and Y. Song, “A position-aware bidirectional attention network for
aspect-level sentiment analysis,” in COLING, (Santa Fe, New Mexico, USA), pp. 774–784,
2018.

[7] B. Xu, X. Wang, B. Yang, and Z. Kang, “Target embedding and position attention with
LSTM for aspect based sentiment analysis,” in International Conference on Mathematics
and Artificial Intelligence, ICMAI, (New York, NY, USA), p. 93–97, ACM, 2020.

[8] D. Zeng, K. Liu, S. Lai, G. Zhou, and J. Zhao, “Relation classification via convolutional
deep neural network,” in COLING, Dublin, Ireland, p. 2335–2344, 2014.

[9] Y. Song, J. Wang, T. Jiang, Z. Liu, and Y. Rao, “Attentional encoder network for targeted
sentiment classification,” ArXiv, vol. abs/1902.09314, 2019.

[10] K. Xu, H. Zhao, and T. Liu, “Aspect-specific heterogeneous graph convolutional network
for aspect-based sentiment classification,” IEEE Access, vol. 8, pp. 139346–139355, 2020.

[11] M. Hu and B. Liu, “Mining and summarizing customer reviews,” in ACM SIGKDD, New
York, NY, United States, p. 168–177, 2004.

[12] M. Pontiki, D. Galanis, J. Pavlopoulos, H. Papageorgiou, I. Androutsopoulos, and S. Man-
andhar, “SemEval-2014 task 4: Aspect based sentiment analysis,” in Proceedings of the 8th
International Workshop on Semantic Evaluation, SemEval Dublin, Ireland, pp. 27–35, Aug.
2014.

[13] M. Pontiki, D. Galanis, H. Papageorgiou, S. Manandhar, and I. Androutsopoulos, “SemEval-
2015 task 12: Aspect based sentiment analysis,” in Proceedings of the 9th International
Workshop on Semantic Evaluation, SemEval, Denver, Colorado, USA, pp. 486–495, 2015.

[14] M. Pontiki, D. Galanis, H. Papageorgiou, I. Androutsopoulos, S. Manandhar, M. AL-
Smadi, M. Al-Ayyoub, Y. Zhao, B. Qin, O. De Clercq, V. Hoste, M. Apidianaki, X. Tannier,

143

C

N. Loukachevitch, E. Kotelnikov, N. Bel, S. M. Jiménez-Zafra, and G. Eryiğit, “SemEval-
2016 task 5: Aspect based sentiment analysis,” in Proceedings of the 10th International
Workshop on Semantic Evaluation, SemEval, San Diego, California, USA, pp. 19–30, 2016.

[15] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9,
pp. 1735–1780, 1997.

[16] J. Zhou, J. Huang, Q. Hu, and L. He, “Is position important? deep multi-task learning for
aspect-based sentiment analysis,” Applied Intelligence, vol. 50, pp. 3367–3378, 2020.

[17] E. Cambria, “Affective computing and sentiment analysis,” IEEE Intelligent Systems,
vol. 31, no. 2, pp. 102–107, 2016.

[18] K. Ravi and V. Ravi, “A survey on opinion mining and sentiment analysis: Tasks, ap-
proaches and applications,” Knowledge-Based Systems, vol. 89, pp. 14–46, 2015.

[19] A. Tripathy, A. Anand, and S. K. Rath, “Document-level sentiment classification using
hybrid machine learning approach,” Knowledge and Information Systems, vol. 53, pp. 805–
831, 2017.

[20] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional networks for text classi-
fication,” in NIPS, vol. 28, (Montréal CANADA), pp. 649–657, Curran Associates, Inc.,
2015.

[21] Q. Qian, M. Huang, J. Lei, and X. Zhu, “Linguistically regularized LSTM for sentiment
classification,” in ACL, (Vancouver, Canada), pp. 1679–1689, ACL, July 2017.

[22] W. Li, W. Shao, S. Ji, and E. Cambria, “BIERU: Bidirectional emotional recurrent unit for
conversational sentiment analysis,” 2020.

[23] Z. Wang, S.-B. Ho, and E. Cambria, “Multi-level fine-scaled sentiment sensing with
ambivalence handling,” Int. J. Uncertain. Fuzziness Knowl. Based Syst., vol. 28, pp. 683–
697, 2020.

[24] Y. Lou, Y. Zhang, F. Li, T. Qian, and D. Ji, “Emoji-based sentiment analysis using atten-
tion networks,” ACM Transactions on Asian and Low-Resource Language Information
Processing, vol. 19, June 2020.

[25] M. Usama, B. Ahmad, E. Song, M. Hossain, M. Alrashoud, and M. Ghulam, “Attention-
based sentiment analysis using convolutional and recurrent neural network,” Future Gener-
ation Computer Systems, vol. 113, pp. 571–578, 2020.

[26] C. Xi, G. Lu, and J. Yan, “Multimodal sentiment analysis based on multi-head attention
mechanism,” in International Conference on Machine Learning and Soft Computing, New
York, NY, United States, p. 34–39, 2020.

[27] M. E. Basiri, S. Nemati, M. Abdar, E. Cambria, and U. R. Acharya, “ABCDM: An attention-
based bidirectional CNN-RNN deep model for sentiment analysis,” Future Generation
Computer Systems, vol. 115, pp. 279–294, feb 2021.

144

C

[28] E. Cambria, Y. Li, F. Z. Xing, S. Poria, and K. Kwok, SenticNet 6: Ensemble Application
of Symbolic and Subsymbolic AI for Sentiment Analysis, p. 105–114. New York, NY, USA:
ACM, 2020.

[29] L. Jiang, M. Yu, M. Zhou, X. Liu, and T. Zhao, “Target-dependent Twitter sentiment
classification,” in ACL, (Portland, Oregon, USA), pp. 151–160, ACL, 2011.

[30] S. Kiritchenko, X. Zhu, C. Cherry, and S. Mohammad, “NRC-Canada-2014: Detecting as-
pects and sentiment in customer reviews,” in Proceedings of the 8th International Workshop
on Semantic Evaluation (SemEval 2014), (Dublin, Ireland), pp. 437–442, ACL, 2014.

[31] M. Sundermeyer, R. Schlüter, and H. Ney, “LSTM neural networks for language modeling,”
in INTERSPEECH, Portland, OR, USA, pp. 194–197, 2012.

[32] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural networks,”
in NIPS, (Cambridge, MA, USA), p. 3104–3112, MIT Press, 2014.

[33] D. Tang, B. Qin, and T. Liu, “Document modeling with gated recurrent neural network for
sentiment classification,” in EMNLP, Lisbon, Portugal, pp. 1422–1432, 2015.

[34] D. Tang, W. Qin, X. Feng, and T. Liu, “Effective LSTMs for target-dependent sentiment
classification,” in COLING, Osaka, Japan, pp. 3298–3307, 2016.

[35] M. Zhang, Y. Zhang, and D.-T. Vo, “Gated neural networks for targeted sentiment analysis,”
in AAAI, Phoenix, Arizona USA, 2016.

[36] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to
align and translate,” 2016.

[37] T. Luong, H. Pham, and C. D. Manning, “Effective approaches to attention-based neural
machine translation,” ArXiv, vol. abs/1508.04025, 2015.

[38] Y. Wang, M. Huang, X. Zhu, and L. Zhao, “Attention-based LSTM for aspect-level senti-
ment classification,” in EMNLP, Austin, Texas, USA, pp. 606–615, 2016.

[39] D. Ma, S. Li, X. Zhang, and H. Wang, “Interactive attention networks for aspect-level
sentiment classification,” in IJCAI, Melbourne, Australia, pp. 4068–4074, 2017.

[40] Y. Ma, H. Peng, and E. Cambria, “Targeted aspect-based sentiment analysis via embedding
commonsense knowledge into an attentive LSTM,” in AAAI, New Orleans, Louisiana, USA,
pp. 5876–5883, 2018.

[41] K. Schouten, F. Frasincar, and F. de Jong, “Ontology-enhanced aspect-based sentiment
analysis,” in Web Engineering (J. Cabot, R. De Virgilio, and R. Torlone, eds.), pp. 302–320,
Springer International Publishing, 2017.

[42] R. K. Yadav, L. Jiao, O.-C. Granmo, and M. Goodwin, “Human-level interpretable learning
for aspect-based sentiment analysis,” in AAAI, Vancouver, Canada, 2021.

145

C

[43] X. Li and W. Lam, “Deep multi-task learning for aspect term extraction with memory
interaction,” in EMNLP, (Copenhagen, Denmark), pp. 2886–2892, AACL, Sept. 2017.

[44] S. Sukhbaatar, a. szlam, J. Weston, and R. Fergus, “End-to-end memory networks,” in
NIPS, vol. 28, (Montréal CANADA), pp. 2440–2448, Curran Associates, Inc., 2015.

[45] D. Tang, B. Qin, and T. Liu, “Aspect level sentiment classification with deep memory
network,” in EMNLP, Austin, Texas, USA, pp. 214–224, 2016.

[46] J. Zhou, Q. Chen, X. Huang, Q. Hu, and L. He, “Position-aware hierarchical transfer model
for aspect-level sentiment classification,” Information Sciences, vol. 513, pp. 1–16, 2020.

[47] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed representations
of words and phrases and their compositionality,” in NIPS, Nevada, USA, vol. 26, pp. 3111–
3119, Curran Associates, Inc., 2013.

[48] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word representa-
tion,” in EMNLP, Doha, Qatar, p. 1532–1543, 2014.

[49] W. Chen, Y. Su, Y. Shen, Z. Chen, X. Yan, and W. Y. Wang, “How large a vocabulary
does text classification need? a variational approach to vocabulary selection,” in NAACL,
(Minneapolis, MN, USA), pp. 3487–3497, ACL, June 2019.

[50] C. W. Wu, “Prodsumnet: reducing model parameters in deep neural networks via product-
of-sums matrix decompositions,” arXiv, vol. abs/1809.02209, 2019.

[51] T. Mikolov, M. Karafi, and S. Khudanpur, “Recurrent neural network based language
model,” in INTERSPEECH, Makuhari, Chiba, Japan, 2010.

[52] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recurrent
neural networks on sequence modeling,” in Workshop on Deep Learning@NIPS, (Montréal,
Canada), 2014.

[53] F. Chollet et al., “Keras,” 2015.

[54] D. P. Kingma and J. Ba, “ADAM: A method for stochastic optimization,” in ICLR 2015,
San Diego, CA, USA, Conference Track Proceedings, 2015.

[55] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A
simple way to prevent neural networks from overfitting,” Journal of Machine Learning
Research, vol. 15, no. 56, pp. 1929–1958, 2014.

[56] O. Wallaart and F. Frasincar, “A hybrid approach for aspect-based sentiment analysis using
a lexicalized domain ontology and attentional neural models,” in ESWC, Portoroz, Slovenia,
2019.

[57] S. Wu, Y. Xu, F. Wu, Z. Yuan, Y. Huang, and X. Li, “Aspect-based sentiment analysis
via fusing multiple sources of textual knowledge,” Knowledge-Based Systems, vol. 183,
p. 104868, 2019.

146

[58] A. Rietzler, S. Stabinger, P. Opitz, and S. Engl, “Adapt or get left behind: Domain adaptation
through bert language model finetuning for aspect-target sentiment classification,” ArXiv,
vol. abs/1908.11860, 2020.

147

D

Appendix D

Paper D

Title: Enhancing Interpretable Clauses Semantically using Pretrained
Word Representation

Authors: Rohan Kumar Yadav, Lei Jiao, Ole-Christoffer Granmo, and
Morten Goodwin

Affiliation: University of Agder, Faculty of Engineering and Science, 4879,
Grimstad, Norway

Conference: 4th Proceedings of the Fourth BlackboxNLP Workshop on Ana-
lyzing and Interpreting Neural Networks for NLP, Punta Cana,
Domincan Republic, Nov. 2021.

DOI: 10.18653/v1/2021.blackboxnlp-1.19.

149

https://aclanthology.org/2021.blackboxnlp-1.19

D

D

Enhancing Interpretable Clauses Semantically using
Pretrained Word Representation

Rohan Kumar Yadav, Lei Jiao, Ole-Christoffer Granmo, and Morten Goodwin
Department of Information and Communication Technology

Faculty of Engineering and Science, University of Agder
4879, Grimstad, Norway

E-mails: {rohan.k.yadav, lei.jiao, ole.granmo, morten.goodwi}@uia.no

Abstract — Tsetlin Machine (TM) is an interpretable pattern recognition algorithm based
on propositional logic, which has demonstrated competitive performance in many Natural
Language Processing (NLP) tasks, including sentiment analysis, text classification, and
Word Sense Disambiguation. To obtain human-level interpretability, legacy TM employs
Boolean input features such as bag-of-words (BOW). However, the BOW representation
makes it difficult to use any pre-trained information, for instance, word2vec and GloVe
word representations. This restriction has constrained the performance of TM compared
to deep neural networks (DNNs) in NLP. To reduce the performance gap, in this paper,
we propose a novel way of using pre-trained word representations for TM. The approach
significantly enhances the performance and interpretability of TM. We achieve this by
extracting semantically related words from pre-trained word representations as input
features to the TM. Our experiments show that the accuracy of the proposed approach is
significantly higher than the previous BOW-based TM, reaching the level of DNN-based
models.

151

D

D.1 Introduction

Tsetlin Machine (TM) is an explainable pattern recognition approach that solves complex
classification problems using propositional formulas [1]. Text- [2], numerical data- [3], and
image classification [4] are recent areas of application. In Natural Language Processing (NLP),
TM has provided encouraging trade-offs between accuracy and interpretability for various tasks.
These include Sentiment Analysis (SA) [5, 6], Word Sense Disambiguation (WSD) [7], and
novelty detection [8]. Because TM NLP models employ bag-of-words (BOW) that treat each
word as independent features, it is easy for humans to interpret them. The models can be
interpreted simply by inspecting the words that take part in the conjunctive clauses. However,
using a simple BOW makes it challenging to attain the same accuracy level as deep neural
network (DNN) based models.

A key advantage of DNN models is distributed representation of words in a vector space. By
using a single-layer neural network, Mikolov et al. introduced such a representation, allowing for
relating words based on the inner product between word vectors [9]. One of the popular methods
is skip-gram, an approach that learns word representations by predicting the context surrounding a
word within a given window length. However, skip-gram has the disadvantage of not considering
the co-occurrence statistics of the corpus. Later, Pennington et al. developed GloVe – a model that
combines the advantages of local window-based methods and global matrix factorization [10].
The foundation for the above vector representation of words is the distributional hypothesis
that states that “the word that occurs in the same contexts tend to have similar meanings” [11].
This means that in addition to forming a rich high-dimensional representation of words, words
that are closer to each other in vector space tend to represent similar meaning. As such, vector
representations have been used to enhance for instance information retrieval [12], name entity
recognition [13], and parsing [14].

The state of the art in DNN-based NLP has been advanced by incorporating various pre-
trained word representations such as GloVe [10], word2vec [9], and fasttext [15]. Indeed,
building semantic representations of the words has been demonstrated to be a vital factor for
improved performance. Most DNN-based models utilize the pre-trained word representations to
initialize their word embeddings. This provides them with additional semantic information that
goes beyond a traditional BOW.

However, in the case of TM, such word representations cannot be directly employed because
they consist of floating-point numbers. First, these numbers must be converted into Boolean form
for TM to use, which may result in information loss. Secondly, replacing the straightforward
BOW of a TM with a large number of floating-point numbers in fine-grained Boolean form would
impede interpretability. In this paper, we propose a novel pre-processing technique that evades
the above challenges entirely by extracting additional features for the BOW. The additional
features are found using the pre-trained distributed word representations to identify words that
enrich the BOW, based on cosine similarity. In this way, TM can use the information from word
representations for increasing performance, and at the same time retaining the interpretability of
the model.

The rest of the paper is organised as follows. We summarize related work in Section D.2. The
proposed semantic feature extraction for TM is then explained in Section D.3. In Section D.4,
we present the TM architecture employing the proposed feature extension. We provide extensive

152

D

experiment results in Section D.5, demonstrating the benefits of our approach, before concluding
the paper in Section A.5.

D.2 Related Work

Conventional text classification usually focuses on feature engineering and classification al-
gorithms. One of the most popular feature engineering approaches is the derivation of BOW
features. Several complex variants of BOW have been designed such as n-grams [16] and entities
in ontologies [17]. Apart from BOW approaches, Tang et al. demonstrated a new mechanism for
feature engineering using a time series model for short text samples [18]. There are also several
techniques to convert text into a graph and sub-graph [19, 20]. In general, none of the above
methods adopt any pre-trained information, hence have inferior performance.

Deep learning-based text classification either depends on initializing models from pre-trained
word representations, or on jointly learning both the word- and document level representations.
Various studies report that incorporating such word representations, embedding the words,
significantly enhances the accuracy of text classification [21, 22]. Another approach related to
pre-trained word embedding is to aggregate unsupervised word embeddings into a document
embedding, which is then fed to a classifier [23, 24].

Despite being empowered with world knowledge through pre-trained information, DNNs
such as BERT [25] and XLNet [26] can be very hard to interpret. One interpretation approach
is to use attention-based models, relying on the weights they assign to the inputs. However,
more careful studies reveal that attention weights in general do not provide a useful explanation
[27, 28]. Researchers are thus increasingly shifting focus to other kinds of machine learning,
with the TM being a recent approach considered to provide human-level interpretability [2, 1, 5].
It offers a very simple model consisting of multiple Tsetlin Automata (TAs) that select which
features take part in the classification. However, despite promising performance, there is still a
performance gap to the DNN models that utilize pre-trained word embedding. Yet, several TM
studies demonstrate high degree of interpretability through simple rules, with a marginal loss in
accuracy [5, 7, 6].

A significant reason for the performance gap between TM-based and state-of-the-art DNN-
based NLP models is that TM operates on Boolean inputs, lacking a method for incorporating
pre-trained word embeddings. Without pre-trained information, TMs must rely on labelled data
available for supervised learning. On the other hand, incorporating high-dimensional Booleanized
word embedding vectors directly into the TM would significantly reduce interpretability. In this
paper, we address this intertwined challenge. We propose a novel technique that boosts the TM
BOW approach, enhancing the BOW with additional word features. The enhancement consists
of using cosine similarity between GloVe word representations to obtain semantically related
words. We thus distill information from the pre-trained word representations for utilization by
the TM. To this end, we propose two methods of feature extension: (1) using the k nearest words
in embedding space and (2) using words within a given similarity threshold, measured as cosine
angle (θ). By adopting the two methods, we aim to reduce the current performance gap between
interpretable TM and black-box DNN, by achieving either higher or similar accuracy.

153

D

D.3 Boosting TM BOW with Semantically Related Words

Here, we introduce our novel method for boosting the BOW of TM with semantically related
words. The method is based on comparing pre-trained word representations using cosine similar-
ity, leveraging distributed word representation. There are various distributional representations
of words available. These are obtained from different corpora, using various techniques, such as
word2vec, GloVe, and fastText. We here use GloVe because of its general applicability.

D.3.1 Input Feature Extraction from Distributed Word Representation

Distributed word representation does not necessarily derive word similarity based on synonyms
but based on the words that appear in the same context. As such, the representation is essential
for NLP because it captures the semantically interconnecting words. Our approach utilizes this
property to expand the range of features that we can use in an interpretable manner in TM.

Consider a full vocabulary W of m words, W = [w1, w2, w3 . . . , wm]. Further consider a
particular sentence that is represented as a Boolean BOW X = [x1, x2, x3, . . . , xm]. In a Boolean
BOW, each element xr, r = 1, 2, 3, . . . ,m, refers to a specific word wr in the vocabulary W .
The element xr takes the value 1 if the corresponding word wr is present in the sentence and
the value 0 if the word is absent. Assume that n words are present in the sentence, i.e., n of
the elements in X are 1-valued. Our strategy is to extract additional features from these by
expanding them using cosine similarity. To this end, we use a GloVe embedding of each present
word wr, r ∈ {z|xz = 1, z = 1, 2, 3 . . . ,m}. The embedding for word wr is represented by
vector we

r ∈ ℜd, where d is the dimensionality of the embedding (typically varying from 25 to
300).

We next introduce two selection techniques to expand upon each word:

• Select the top k most similar words,

• Select words up to a fixed similarity angle cos(θ) = ϕ.

For example, let us consider two contexts: “very good movie” and “excellent film, enjoyable”.
Figs. D.1 and D.2 list similar words showing the difference between top k words and words
within angle cos(θ), i.e., ϕ. In what follows, we will explain how these words are found.

D.3.2 Similar Words based on Top k Nearest Words

We first boost the Boolean BOW of the considered sentence by expanding X with (k − 1)× n

semantically related words. That is, we add k− 1 new words for each of the n present words. We
do this by identifying neighbouring words in the GloVe embedding space, using cosine similarity
between the embedding vectors.

Consider the GloVe embedding vectors W e
G = [we

1, w
e
2, . . . , w

e
m] of the full vocabulary

W . For each word wr from the sentence considered, the cosine similarity to each word wt,
t = 1, 2, . . . ,m, of the full vocabulary is given by Eq. (A.1),

ϕt
r = cos(we

r, w
e
t) =

we
r · we

t

||we
r|| · ||we

t ||
. (A.1)

154

D

Clearly, ϕt
r is the cosine similarity between we

r and we
t . By calculating the cosine similarity of

wr to the words in the vocabulary, we obtain m values: ϕt
r, t = 1, 2, . . . ,m. We arrange these

values in a vector Φr:
Φr = [ϕ1

r , ϕ
2
r , . . . , ϕ

m
r]. (A.2)

The k elements from Φr of largest value are then identified and their indices are stored in a new
set Ar.

Finally, a boosted BOW, referred to as Xmod, can be formed by assigning element xt value 1

whenever one of the Ar contains t, and 0 otherwise:

Xmod = [x1, x2, x3, . . . , xm], (A.3)

xt =

{
1 ∃r, t ∈ Ar

0 ∄r, t ∈ Ar.

In addition, the vocabulary size for a particular task/dataset can be changed accordingly, which
is usually less than m. Note that implementation-wise, the GloVe library provides the top k

similar words of wr without considering the word wr itself, having similarity score 1. Hence,
using the GloVe library, wr must also be added to the boosted BOW.

D.3.3 Similar Words within Cosine Angle Threshold

Another approach to enrich the Boolean BOW of a sentence is thresholding the cosine angle.
This is different from the first technique because the number of additional words extracted will
vary rather than being fixed. Whereas the first approach always produces k − 1 new features
for each given word, the cosine angle thresholding brings in all those words that are sufficiently
similar. The cosine similarity threshold is given by ϕ = cos(θ), where θ is the threshold for
vector angle, while ϕ is the corresponding similarity score.

As per Eq. (A.2), we obtain Φr, which consists of the similarity scores of the given word wr

in comparison to the m words in the vocabulary. Then, for each given word wr, the indices of
those scores ϕt

r that are greater than or equal to ϕ (ϕt
r ≥ ϕ) are stored in the set Ar. Similar to

the first technique, the words in W with the indices in Ar are utilized to create Xmod as given by
Eq. (A.3).

D.4 Tsetlin Machine-based Classification

D.4.1 Tsetlin Machine Architecture

A TM is composed by TAs that operate with literals – Boolean inputs and their negations – to
form conjunctions of literals (conjunctive clauses). A dedicated team of TAs builds each clause,
with each input being associated with a pair of TAs. One TA controls the original Boolean input
whereas the other TA controls its negation. The TA pair selects a combination of “Include” or
“Exclude” actions, which decide the form of the literal to include or exclude in the clause.

Each TA decides upon an action according to its current state. There are N states per TA
action, 2N states in total. When a TA finds itself in states 1 to N , it performs the “Exclude”

155

D

excellent film, enjoyable

excellent

good

similarity

0.703

superb 0.680

terrific 0.656

wonderful 0.584

quality 0.603

best 0.550

exceptional 0.550

perfect 0.535

film similarity enjoyable similarity

impressive 0.534

decent 0.532

movie 0.858

films 0.839

movies 0.716

documentary 0.656

directed 0.683

starring 0.651

cinema 0.637

screenplay 0.632

drama 0.622

comedy 0.615

entertaining 0.688

pleasurable 0.660

exhilarating 0.647

exciting 0.619

fun 0.625

amusing 0.605

satisfying 0.585

engrossing 0.578

enlightening 0.573

informative 0.571

w
or

ds
 w

ith
in

to
p
k

si
m

ila
r w

or
ds

Figure D.1: Similar words for an example “excellent film, enjoyable” using 300d GloVe word
representation.

very good movie

very

extremely

similarity

0.872

quite 0.858

so 0.785

too 0.731

pretty 0.738

really 0.729

well 0.720

always 0.712

good similarity movie similarity

especially 0.709

but 0.707

better 0.765

really 0.736

always 0.717

well 0.704

you 0.707

excellent 0.703

very 0.696

things 0.693

think 0.689

way 0.683

film 0.858

movies 0.849

films 0.790

starring 0.675

hollywood 0.679

comedy 0.658

sequel 0.646

remake 0.624

drama 0.608

actor 0.599

to
p
k

si
m

ila
r w

or
ds

w
or

ds
 w

ith
in

Figure D.2: Similar words for an example “very good movie” using 300d GloVe word represen-
tation.

action. When in states N + 1 to 2N , it performs the “Include” action. How the TA updates
its state is shown in Fig. D.3. If it receives Reward, the TA moves to a deeper state thereby
increasing its confidence in the current action. However, if it receives Penalty, it moves towards
the centre, weakening the action. It may eventually jump over the middle decision boundary, to
the other action. It is through this game of TAs that the TM shapes the clauses into frequent and
discriminative patterns.

With respect to NLP, TM heavily relies on the Boolean BOW introduced earlier in the
paper. We now make use of our proposed modified BOW Xmod = [x1, x2, x3, . . . , xm]. Let
l be the number of clauses that represent each class of the TM, covering q classes altogether.
Then, the overall pattern recognition problem is solved using l × q clauses. Each clause Cj

i ,

1 ≤ j ≤ q, 1 ≤ i ≤ l of the TM is given by Cj
i =

(∧
k∈Iji

xk

)
∧

(∧
k∈Īji

¬xk

)
, where Iji and Īji

are non-overlapping subsets of the input variable indices, I ij, Ī ij ⊆ {1, . . . ,m}, I ij ∩ Ī ij = ∅. The
subsets decide which of the input variables take part in the clause, and whether they are negated

156

D

Exclude Inlcude

Penatly Reward

Figure D.3: A TA with two actions: “Include” and “Exclude”.

or not. The indices of input variables in I ij represent the literals that are included as is, while
the indices of input variables in Ī ij correspond to the negated ones. Among the q clauses of each
class, clauses with odd indexes are assigned positive polarity (+) whereas those with even indices
are assigned negative polarity (-). The clauses with positive polarity vote for the target class
and those with negative polarity vote against it. A summation operator aggregates the votes by
subtracting the total number of negative votes from positive votes, as shown in Eq. (A.4).

f j(Xmod) = Σl−1
i=1,3,...C

j
i (Xmod)−

Σl
i=2,4,...C

j
i (Xmod).

(A.4)

For q number of classes, the final output y is given by the argmax operator to classify the
input based on the highest sum of votes, ŷ = argmaxj (f

j(Xmod)).

D.4.2 Distributed Word Representation in TM

Consider two contexts for sentiment classification: “Very good movie” and “Excellent film,
enjoyable”. Both contexts have different vocabularies but some of them are semantically related
to each other. For example, “good” and “excellent” have similar semantics as well as “film”
and “movie”. Such semantics are not captured in the BOW-based input. However, as shown in
Fig. D.4, adding words to the BOWs that are semantically related, as proposed in the previous
section, makes distributed word representation available to the TM.

The resulting BOW-boosted TM architecture is shown in Fig. D.5. Here each input feature is
first expanded using the GloVe representation, adding semantically related words. Each feature
is then transferred to its corresponding TAs, both in original and negated form. Each TA, in turn,
decides whether to include or exclude its literal in the clause by taking part in a decentralized
game. The actions of each TA is decided by its current state and updated by the the feedback
it receives based on its action. As shown in the figure, the TA actions produce a collection of
conjunctive clauses, joining the words into more complex linguistic patterns.

There are two types of feedback that guides the TA learning. They are Type I feedback and
Type II feedback, detailed in [1]. Type I feedback is triggered when the ground truth label is 1,
i.e., y = 1. The purpose of Type I feedback is to include more literals from the BOW to refine
the clauses, or to trim them by removing literals. The balance between refinement and trimming
is controlled by a parameter called specificity, s. Type I feedback guides the clauses to provide
true positive output, while simultaneously controlling over-fitting by producing frequent patterns.
Conversely, Type II feedback is triggered in case of false positive output. Its main aim is to
introduce zero-valued literals into clauses when they give false positive output. The purpose is
to change them so that they correctly output zero later in the learning process. Based on these

157

D

feedback types, each TA in a clause receives Reward, Penalty or Inaction. The overall learning
process is explained in detail by Yadav et al. in [5].

Tsetlin Machine

very
extremely

better

superb
perfect

fun

good
excellent

movie
film

Tsetlin Machine

very

good
movie

excellent
film

enjoyable

(a) (b)

Figure D.4: (a) BOW input representation without distributed word representation. (b) BOW
input using similar words based on distributed word representation.

Argmax
Operator

BOW TAs Clauses Clause
Summation

output

-2
, -

1,
 0

, 1
, 2

, 3
, 4

, 5

Input features

Glove representation

-2, -1, 0, 1, 2, 3, 4, 5

Figure D.5: Architecture of TM using modified BOW based on word similarity.

D.5 Experiments and Results

In this section, we evaluate our TM-based solution with the input features enhanced by dis-
tributed word representation. Here we use Glove pretrained word vector that is trained using
CommonCrawl with the configuration of 42B tokens, 1.9M vocab, uncased, and 300d vectors.

D.5.1 Datasets

We have selected various types of datasets to investigate how broadly our method is applicable:
R8 and R52 of Reuters, Movie Review (MR), and TREC-6. • Reuters 21578 dataset include
two subsets: R52 and R8 (all-terms version). R8 is divided into 8 sections while there are 52
categories in R52. •MR is a movie analysis dataset for binary sentiment classification with just
one sentence per review [29]. In this study, we used a training/test split from [24]1. •TREC-6

1https://github.com/mnqu/PTE/tree/master/data/mr.

158

D

Parameters R8 R52 MR TREC
k=0 96.16 84.62 75.14 88.05
k=3 97.08 88.59 75.21 88.72
k=5 96.80 70.60 76.06 89.16
k=10 87.44 66.94 77.51 89.82

Table D.1: Comparison of feature extended TM with several parameters for k.

is a question classification dataset [30]. The task entails categorizing a query into six distinct
categories (abbreviation, description, entity, human, location, numeric value).

D.5.2 TM Parameters

A TM has three parameters that must be initialized before training a model: number of clauses
l, voting target T , and specificity s. We configure these parameters as follows. For R8, we use
2,500 clauses, a threshold of 80, and specificity 9. The vocabulary size is 5,000. For R52, we
employ 1,500 clauses, the voting target is 80, and specificity is 9. Here, we use a vocabulary of
size 6,000. For MR, the number of clauses is 3,000, the voting target is 80, and specificity is 9,
with a vocabulary of size 5,000. Finally, for TREC, we use 2,000 clause, a voting target of 80,
and specificity 9, with vocabulary size 6,000. These parameters are kept static as we explore
various k and θ values for selecting similar words to facilitate comparison. The code and datasets
are available online 2.

D.5.3 Performance When Using Top k Nearest Neighbors

Here, we demonstrate the performance on each of the datasets, exploring the effect of different
k-values, i.e., 3, 5 and 10. The performance of the proposed technique for selected datasets with
various values of k is compared in Table D.1. It can be seen that by using feature extension,
performance is significantly enhanced. Both k = 3 and k = 5 outperform the simple BOW
(k = 0). However, for this particular dataset, k = 10 performs poorly because extending each
word to its 10 nearest neighbors includes many unnecessary contexts that have no significant
impact on the classification. In terms of accuracy, k = 5 performs best for the R8 dataset. For
the R52 dataset, the feature extension with k = 5 and k = 10 performs poorly compared to using
k = 0 and k = 3. Here, k = 3 is the best-performing parameter. The improvement obtained by
moving from a simple BOW to a BOW enhanced with semantically similar features is obvious
in the case of the R52 dataset. Similarly, in the case of the TREC dataset, the performance of
simple BOW (k = 0) is markedly outperformed by the feature extension techniques for all the
tested k-values, with k = 5 and k = 10 being good candidates. The advantage of k = 10 over
k = 5 is that k = 10 reaches its peak accuracy in an earlier epoch. Lastly, the performance of
the MR is again clear that the feature extension technique outperforms the simple BOW (k = 0)
with a high margin.

2https://github.com/rohanky/Glove-TM

159

https://github.com/rohanky/Glove-TM

D

Parameters R8 R52 MR TREC
ϕ = 0 96.16 84.62 75.14 88.05
ϕ = 0.5 88.08 89.14 73.24 90.04
ϕ = 0.6 90.86 88.05 74.34 87.83
ϕ = 0.7 96.53 88.51 76.55 89.38
ϕ = 0.8 96.25 88.94 75.12 88.27
ϕ = 0.9 96.39 87.50 74.59 87.39

Table D.2: Comparison of feature extended TM with several parameters for ϕ.

D.5.4 Performance When Using Neighbors Within a Similarity Threshold

This section demonstrates the performance of our BOW enhancement approach when using
various similarity thresholds ϕ for feature extension. Here, ϕ refers to the cosine similarity
between a word in the BOW and a target word from the overall vocabulary. Again, similarity is
measured in the GloVe embedding space as the cosine of the angle θ between the embedding
vectors compared, cos(θ). For ϕ, we here explore the values 0.5, 0.6, 0.7, 0.8, and 0.9, whose
corresponding angles are 60◦, 53.13◦, 45.57◦, 36.86◦, and 25.84◦, respectively. The performance
of the various ϕ-values for the selected dataset is shown in Table D.2. For R8 dataset, feature
extension using ϕ = 0.7, ϕ = 0.8, and ϕ = 0.9 outperforms the simple BOW (ϕ = 0) where
ϕ = 0.7 being the best. In case of the R52 dataset, all of the investigated ϕ-values outperform the
simple BOW (ϕ = 0) where ϕ = 0.5 and ϕ = 0.8 performs the best. Similar trend is observed in
case of TREC and MR dataset where feature extension outperforms the simple BOW.

In most of the cases, however, a too strict similarity threshold ϕ tends to reduce performance
because fewer features are added to the BOW. Even though using a looser similarity score
thresholds also introduces unnecessary features, these do not seem to impact the formation
of accurate clauses. Overall, our experiments show that using ϕ-values from 0.5 to 0.7 peaks
performance.

D.5.5 Comparison with Baselines

We here compare our proposed model with selected text classification- and embedding methods.
We have selected representative techniques from various main approaches, both those that
leverage similar kinds of pre-trained word embedding and those that only use BOW. The selected
baselines are: •TF-IDF+LR: This is a bag-of-words model employing Term Frequency-Inverse
Document Frequency (TF-IDF) weighting. Logistic Regression is used as a softmax classifier.
•CNN: The CNN-baselines cover both initialization with random word embedding (CNN-rand)
as well as initialization with pretrained word embedding (CNN-non-static) [31]. • LSTM:
The LSTM model that we employ here is from [32], representing the entire text using the last
hidden state. We tested this model with and without pre-trained word embeddings. • Bi-LSTM:
Bi-directional LSTMs are widely used for text classification. We compare our model with
Bi-LSTM fed with pre-trained word embeddings. •PV-DBOW: PV-DBOW is a paragraph vector
model where the word order is ignored. Logistic Regression is used as a softmax classifier [23].
• PV-DM: PV-DM is also a paragraph vector model, however with word ordering taken into
account. Logistic Regression is used as a softmax classifier [23]. •fastText: This baseline is

160

D

a simple text classification technique that uses the average of the word embeddings provided
by fastText as document embedding. The embedding is then fed to a linear classifier [21]. We
evaluate both the use of uni-grams and bigrams. • SWEM : SWEM applies simple pooling
techniques over the word embeddings to obtain a document embedding [33]. •Graph-CNN-C:
A graph CNN model uses convolutions over a word embedding similarity graph [34], employing
a Chebyshev filter. •S2GC: This technique uses a modified Markov Diffusion Kernel to derive
a variant of Graph Convolutional Network (GCN) [35]. •LguidedLearn: It is a label-guided
learning framework for text classification. This technique is applied to BERT as well [36], which
we use for comparison purposes here. •Feature Projection (FP): It is a novel approach to
improve representation learning through feature projection. Existing features are projected into
an orthogonal space [37].

From Table D.3, we observe that the TM approaches that employ either of our feature
extension techniques outperform several word embedding-based Logistic Regression approaches,
such as PV-DBOW, PV-DM, and fastText. Similarly, the legacy TM outperforms sophisticated
models like CNN and LSTM based on randomly initialized word embedding. Still, the legacy
TM falls of other models when they are initialized by pre-trained word embeddings. By boosting
the Boolean BOW with semantically similar features using our proposed technique, however,
TM outperforms LSTM (pretrain) on the R8 dataset and performs similarly on R52 and MR. In
addition to this, our proposed approach achieves quite similar performance compared to BERT,
even though BERT has been pre-trained on a huge text corpus. However, it falls slightly short of
sophisticated fine-tuned models like Lguided-BERT-1 and Lguided-BERT-3. Overall, our results
show that our proposed feature extension technique for TMs significantly enhances accuracy,
reaching state of the art accuracy. Importantly, this accuracy enhancement does not come at the
cost of reduced interpretability, unlike DNNs, which we discuss below. The state of the art for
the TREC dataset is different from the other three datasets, hence we report results separately in
Table D.4. These results clearly show that although the basic TM model does not outperform the
recent DNN- and transformer-based models, the feature-boosted TM outperforms all of those
models except understandably BAE:BERT [38].

D.5.6 Interpretation

The proposed feature extension-based TM does not only impact accuracy. Perhaps surprisingly,
our proposed technique also simplify the clauses that the TM produces, making them more
meaningful in a semantic sense. To demonstrate this property, let us consider two samples from
the MR dataset: S1=“the cast is uniformly excellent and relaxed” and S2=“the entire cast is
extraordinarily good”. Let the vocabulary, in this case, be [cast, excellent, relaxed, extraordinarily,
good, bad, boring, worst] as shown in Fig. D.6. .

As we can see, that the TM initialized with normal BOW uses two separate clauses to
represent two examples. However, augmenting feature on TM uses only one clause that learns
the semantic for multiple examples.This indeed makes interpretation of TM more powerful and
meaningful as compared to simple BOW based TM.

161

D

Model R8 R52 MR
TF-IDF+LR 93.74 86.95 74.59
CNN-rand 94.02 85.37 74.98

CNN-non-static 95.71 87.59 77.75
LSTM 93.68 85.54 75.06

LSTM (pretrain) 96.09 90.48 77.33
Bi-LSTM 96.31 90.54 77.68

PV-DBOW 85.87 78.29 61.09
PV-DM 52.07 44.92 59.47
fastText 96.13 92.81 75.14

fastText (bigrams) 94.74 90.99 76.24
SWEM 95.32 92.94 76.65
LEAM 93.31 91.84 76.95

Graph-CNN-C 96.99 92.74 77.22
S2GC 97.40 94.50 76.70
BERT 96.02 89.66 79.24

Lguided-BERT-1 97.49 94.26 81.03
Lguided-BERT-3 98.28 94.32 81.06

TM 96.16± 1.52 84.62± 1.8 75.14± 1.2
TM with k 97.50± 1.12 88.59± 1.2 77.51± 0.6
TM with ϕ 96.39± 1.0 89.14± 1.5 76.55± 0.9

Table D.3: Comparison of feature extended TM with the state of the art for R8, R52 and MR.
Reported accuracy of TM is the mean of last 50 epochs of 5 independent experiments with their
standard deviation.

D.6 Conclusions

In this paper, we aimed to enhance the performance of Tsetlin Machines (TMs) by introducing
a novel way to exploit distributed feature representation for TMs. Given that a TM relies on
Bag-of-words (BOW), it is not possible to introduce pre-trained word representation into a
TM directly, without sacrificing the interpretability of the model. To address this intertwined
challenge, we extended each word feature by using cosine similarity on the distributed word
representation. We proposed two techniques for feature extension: (1) using the k nearest words
in embedding space and (2) including words within a given cosine angle (θ). Through this
enhancement, the TM BOW can be boosted with pre-trained world knowledge in a simple yet
effective way. Our experiment results showed that the enhanced TM not only achieve competitive
accuracy compared to state of the art, but also outperform some of the sophisticated deep neural
network (DNN) models. In addition, our BOW boosting also improved the interpretability of
the model by increasing the scope of each clause, semantically relating more samples. We thus
believe that our proposed approach significantly enhance the TM in the accuracy/interpretability
continuum, establishing a new standard in the field of explainable NLP.

162

D

Model TREC
LSTM 87.19
FP+LSTM 88.83
Transformer 87.33
FP+Transformer 89.51
BAE: BERT 97.6
TM [39] 87.20
TM 88.05± 1.52
TM with k 89.82± 1.18
TM with ϕ 90.04± 0.94

Table D.4: Comparison of feature extended TM with the state of the art for TREC. Reported
accuracy of TM is the mean of last 50 epochs of 5 independent experiments with their standard
deviation.

the cast is uniformly
excellent and relaxed

the entire cast is
extraordinarily good

the cast is uniformly
excellent/good and

relaxed

the entire cast is
extraordinarily
good/excellent

TM with a simple BOW

TM with a feature extended BOW

Figure D.6: Clause learning semantic for multiple examples compared to simple BOW based
TM.

163

D

D

Bibliography

[1] O.-C. Granmo, “The tsetlin machine - a game theoretic bandit driven approach to optimal
pattern recognition with propositional logic,” ArXiv, vol. abs/1804.01508, 2018.

[2] G. T. Berge, O.-C. Granmo, T. O. Tveit, M. Goodwin, L. Jiao, and B. V. Matheussen, “Using
the tsetlin machine to learn human-interpretable rules for high-accuracy text categorization
with medical applications,” IEEE Access, vol. 7, pp. 115134–115146, 2019.

[3] K. D. Abeyrathna, O.-C. Granmo, X. Zhang, and M. Goodwin, “A scheme for continuous
input to the Tsetlin machine with applications to forecasting disease outbreaks,” in Advances
and Trends in Artificial Intelligence. From Theory to Practice, pp. 564–578, Springer
International Publishing, 2019.

[4] O.-C. Granmo, S. Glimsdal, L. Jiao, M. Goodwin, C. W. Omlin, and G. T. Berge, “The
convolutional tsetlin machine,” arXiv, vol. 1905.09688, 2019.

[5] R. K. Yadav, L. Jiao, O.-C. Granmo, and M. Goodwin, “Human-level interpretable learning
for aspect-based sentiment analysis,” in The Thirty-Fifth AAAI Conference on Artificial
Intelligence (AAAI-21), AAAI, 2021.

[6] R. Saha, O.-C. Granmo, and M. Goodwin, “Mining interpretable rules for sentiment and
semantic relation analysis using tsetlin machines,” in Artificial Intelligence XXXVII, (Cham),
pp. 67–78, Springer International Publishing, 2020.

[7] R. K. Yadav., L. Jiao., O. Granmo., and M. Goodwin., “Interpretability in word sense
disambiguation using tsetlin machine,” in Proceedings of the 13th International Confer-
ence on Agents and Artificial Intelligence - Volume 2: ICAART,, pp. 402–409, INSTICC,
SciTePress, 2021.

[8] B. Bhattarai., O. Granmo., and L. Jiao., “Measuring the novelty of natural language text
using the conjunctive clauses of a tsetlin machine text classifier,” in Proceedings of the
13th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,,
pp. 410–417, INSTICC, SciTePress, 2021.

[9] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed representations
of words and phrases and their compositionality,” in NIPS, Nevada, USA, vol. 26, pp. 3111–
3119, Curran Associates, Inc., 2013.

[10] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word representa-
tion,” in EMNLP, Doha, Qatar, p. 1532–1543, 2014.

[11] Z. S. Harris, “Distributional structure,” WORD, vol. 10, no. 2-3, pp. 146–162, 1954.

[12] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information Retrieval.
Cambridge University Press, 2008.

165

D

[13] J. Turian, L.-A. Ratinov, and Y. Bengio, “Word representations: A simple and general
method for semi-supervised learning,” in Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics, (Uppsala, Sweden), pp. 384–394, Association
for Computational Linguistics, 2010.

[14] R. Socher, J. Bauer, C. D. Manning, and A. Y. Ng, “Parsing with compositional vector
grammars,” in Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), (Sofia, Bulgaria), pp. 455–465, Association for
Computational Linguistics, 2013.

[15] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word vectors with subword
information,” Transactions of the Association for Computational Linguistics, vol. 5, pp. 135–
146, 2017.

[16] S. Wang and C. Manning, “Baselines and bigrams: Simple, good sentiment and topic
classification,” in ACL (Volume 2: Short Papers), (Jeju Island, Korea), pp. 90–94, 2012.

[17] V. Chenthamarakshan, P. Melville, V. Sindhwani, and R. D. Lawrence, “Concept labeling:
Building text classifiers with minimal supervision,” in IJCAI, pp. 1225–1230, 2011.

[18] Y. Tang, K. Blincoe, and A. Kempa-Liehr, “Enriching feature engineering for short text
samples by language time series analysis,” EPJ Data Science, vol. 9, pp. 1–59, 2020.

[19] F. Rousseau, E. Kiagias, and M. Vazirgiannis, “Text categorization as a graph classification
problem,” in ACL (Volume 1: Long Papers), (Beijing, China), pp. 1702–1712, ACL, 2015.

[20] Y. Luo, Ö. Uzuner, and P. Szolovits, “Bridging semantics and syntax with graph algorithms
- state-of-the-art of extracting biomedical relations,” Briefings in bioinformatics, vol. 18 1,
pp. 160–178, 2017.

[21] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for efficient text
classification,” in EACL: Volume 2, Short Papers, (Valencia, Spain), pp. 427–431, ACL,
2017.

[22] D. Shen, G. Wang, W. Wang, M. R. Min, Q. Su, Y. Zhang, C. Li, R. Henao, and L. Carin,
“Baseline needs more love: On simple word-embedding-based models and associated
pooling mechanisms,” in ACL Volume 1: Long Papers, (Melbourne, Australia), pp. 440–
450, ACL, 2018.

[23] Q. Le and T. Mikolov, “Distributed representations of sentences and documents,” in Pro-
ceedings of the 31st International Conference on Machine Learning, vol. 32 of Proceedings
of Machine Learning Research, (Bejing, China), pp. 1188–1196, PMLR, 22–24 Jun 2014.

[24] J. Tang, M. Qu, and Q. Mei, “Pte: Predictive text embedding through large-scale hetero-
geneous text networks,” in Proceedings of the 21th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, KDD ’15, (Sydney, NSW, Australia),
p. 1165–1174, Association for Computing Machinery, 2015.

166

D

[25] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirec-
tional transformers for language understanding,” in ACL: Human Language Technologies,
Volume 1 (Long and Short Papers), (Minneapolis, Minnesota), pp. 4171–4186, ACL, 2019.

[26] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and Q. V. Le, “Xlnet: Gen-
eralized autoregressive pretraining for language understanding,” in Advances in Neural
Information Processing Systems (H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, eds.), vol. 32, Curran Associates, Inc., 2019.

[27] B. Bai, J. Liang, G. Zhang, H. Li, K. Bai, and F. Wang, “Why is attention not so inter-
pretable,” arXiv: Machine Learning, 2020.

[28] S. Serrano and N. A. Smith, “Is attention interpretable?,” in ACL, (Florence, Italy), pp. 2931–
2951, ACL, 2019.

[29] B. Pang and L. Lee, “Seeing stars: Exploiting class relationships for sentiment categoriza-
tion with respect to rating scales,” in ACL, (Michigan, USA), p. 115–124, ACL, 2005.

[30] X. Li and D. Roth, “Learning question classifiers,” in COLING, 2002.

[31] Y. Kim, “Convolutional neural networks for sentence classification,” in Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), (Doha,
Qatar), pp. 1746–1751, ACL, 2014.

[32] P. Liu, X. Qiu, and X. Huang, “Recurrent neural network for text classification with
multi-task learning,” in IJCAI, p. 2873–2879, 2016.

[33] D. Shen, G. Wang, W. Wang, M. R. Min, Q. Su, Y. Zhang, C. Li, R. Henao, and L. Carin,
“Baseline needs more love: On simple word-embedding-based models and associated
pooling mechanisms,” in ACL (Volume 1: Long Papers), (Melbourne, Australia), pp. 440–
450, ACL, 2018.

[34] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on
graphs with fast localized spectral filtering,” in Advances in Neural Information Processing
Systems (D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, eds.), vol. 29, Curran
Associates, Inc., 2016.

[35] H. Zhu and P. Koniusz, “Simple spectral graph convolution,” in International Conference
on Learning Representations, 2021.

[36] X. Liu, S. Wang, X. Zhang, X. You, J. Wu, and D. Dou, “Label-guided learning for text
classification,” ArXiv, vol. abs/2002.10772, 2020.

[37] Q. Qin, W. Hu, and B. Liu, “Feature projection for improved text classification,” in ACL,
(Online), pp. 8161–8171, ACL, 2020.

[38] S. Garg and G. Ramakrishnan, “Bae: Bert-based adversarial examples for text classification,”
2020.

167

[39] Dragos, , C. Nicolae, and dragosnicolae, “Question classification using interpretable tsetlin
machine,” in International Workshop of Machine Reasoning, ACM International Conference
on Web Search and Data Mining, 2021.

168

E

Appendix E

Paper E

Title: Robust Interpretable Text Classification against Spurious Correla-
tions Using AND-rules with Negation

Authors: Rohan Kumar Yadav, Lei Jiao, Ole-Christoffer Granmo, and
Morten Goodwin

Affiliation: University of Agder, Faculty of Engineering and Science, 4879,
Grimstad, Norway

Conference: International Joint Conference on Artificial Intelligence (IJCAI),
2022.

DOI: .

169

E

E

Robust Interpretable Text Classification against Spurious
Correlations Using AND-rules with Negation

Rohan Kumar Yadav, Lei Jiao, Ole-Christoffer Granmo, and Morten Goodwin
Department of Information and Communication Technology

Faculty of Engineering and Science, University of Agder
4879, Grimstad, Norway

E-mails: {rohan.k.yadav, lei.jiao, ole.granmo, morten.goodwi}@uia.no

Abstract — The state-of-the-art Natural Language Processing (NLP) models have raised
the bar for excellent performance on a variety of tasks in recent years. However, concerns
are rising over their primitive sensitivity to distribution biases that reside in the training
and testing data. This issue hugely impacts the performance of the models when exposed to
out-of-distribution and counterfactual data. The root cause seems to be that many machine
learning models are prone to learn the shortcuts, modelling simple correlations rather
than more fundamental and general relationships. As a result, such text classifiers tend
to perform poorly when a human makes minor modifications to the data, which raises
questions regarding their robustness. In this paper, we employ a rule-based architecture
called Tsetlin Machine (TM) that learns both simple and complex correlations by ANDing
features and their negations. As such, it generates explainable AND-rules using negated
and non-negated reasoning. Here, we explore how non-negated reasoning can be more
prone to distribution biases than negated reasoning. We further leverage this finding by
adapting the TM architecture to mainly perform negated reasoning using the specificity
parameter s. As a result, the AND-rules becomes robust to spurious correlations and
can also correctly predict counterfactual data. Our empirical investigation of the model’s
robustness uses the specificity s to control the degree of negated reasoning. Experiments on
publicly available Counterfactually-Augmented Data1 demonstrate that the negated clauses
are robust to spurious correlations and outperform Naive Bayes, SVM, and Bi-LSTM by
up to 20%, and ELMo by almost 6% on counterfactual test data.

1https://github.com/acmi-lab/counterfactually-augmented-data

171

https://github.com/acmi-lab/counterfactually-augmented-data

E

E.1 Introduction

Despite impressive advances of Deep Neural Network (DNN) architectures for Natural Language
Processing (NLP), their implementations still suffer from various challenges. One of the chal-
lenges is associated with DNN’s capability of learning simple correlations and ignoring more
complex ones [1]. This behavior of DNN becomes questionable when the simple correlation
is spurious and absent from the test data, or occurs in an unfitting context. For instance, in the
sentence Nolan’s films are always great mostly because of his excellent direction, the influential
word for predicting a positive sentiment should be “great” and “excellent” instead of “Nolan’s”
and “direction”. However, due to the majority of samples consist of “Nolan having a great
movie”, it makes the classifier learn that “Nolan” corresponds to a positive sentiment word [2].
Similarly, a toxicity classifier learns that “gay” corresponds to a toxic comments [3] and a medi-
cal diagnosis classification system learns the disease associated with the patient ID [4] The issue
of spurious patterns also moderately impacts the out-of-distribution (OOD) generalization of
models that are trained on independent identical distribution (IID) data, resulting in performance
degradation when the distribution shifts.

Researchers recently have found that the decay in model performance, as well as social bias
in NLP, appear out-of-domain due to sensitivity towards spurious signals. One of the solutions to
deal with such vulnerability in NLP models is data augmentation with counterfactual samples [5],
which can help the model with learning real causal correlations between input and labels. For
instance, a man-made counterfactual sample of the last example could be Nolan’s films are always
boring mostly because of his poor direction. Inserting such counterfactual data into the original
training sets has shown to be beneficial for learning real causal correlation thereby improving the
robustness of the model [5]. However, augmentation with counterfactual data usually relies on a
human-in-the-loop system to generate sentiment-flipped samples. For this process, humans are
asked to make minimal and believable edits to generate counterfactual samples. Even though
such an addition of data makes the model robust against spurious correlations, completing a
human-in-the-loop process is costly and time-consuming.

The main reason behind the failure of DNNs on counterfactual data during inference is
still unclear because of their black-box nature [6]. What they learn from the data that limits
the models’ robustness against different distribution samples is currently an open research
question. Some researchers argue that the attention mechanism provides an explanation of
DNN models, which assigns soft weights to the input representations, and then extracts highly
weighted tokens as rationales [7]. However, these attention weights do not provide faithful
explanations for classification [8, 9]. In addition, DNNs fail to conduct logical reasoning in
various tasks. Logical reasoning is one of the most important prerequisites in NLP that supports
various practical applications such as legal assistants, medical decision support, and personalized
recommender systems. Due to these issues, DNNs have failed to demonstrate their robustness
on counterfactual data. On the other hand, a rule-based knowledge system is a powerful tool
that offers logical reasoning because of its explainability. However, most rule-based systems
rely on static rules that are hand-crafted. Without learning capability, the performance and
generalization is limited. Keeping these two challenges in consideration, we employ a recent
architecture called Tsetlin machine (TM), which is an interpretable rule-based model that learns
both simple and complex correlations via conjunctive clauses [10]. Unlike DNNs and simple

172

E

rule-based architectures, TM learns rules with logical reasoning as a human does and it also offers
a transparent and interpretable learning [11]. Such rule-based logical reasoning is important for
processing counterfactual data, and we here study the TM robustness towards counterfactual
test data compared with DNNs. In addition, we demonstrate how TM supports reasoning
with negation, which is completely different from attention-based DNN models. The main
contributions of the paper are as follows:

• We design a TM-based approach that is robust to spurious correlations on counterfactual
and out-of-domain data, without any data augmentation.

• Our in-depth analysis of TM specificity parameter s records transparent learning and
explainable predictions on counterfactual data.

E.2 Related Work

Many recent papers have shown that the DNN-based NLP models do not seem to learn the
aspects that humans deem important for a particular classification. The state-of-the-art models
have been vulnerable to fabricated transformations. Effective fabrications include distractor
phrases, adversarial example generation with paraphrasing, and template-based modifications.
As the result, researchers develop counterfactual data augmentation approaches for building
robust classifiers [12] to eliminate the effect of spurious correlations. In attempt to augment
counterfactual data, [5] develops a human-in-the-loop system using crowd-sourcing methods [5].
It is shown that such augmented data makes the trained model robust not only to counterfac-
tual data but also to out-of-domain datasets. However, due to the fact that crowd-sourcing is
time-consuming and expensive, an automatic augmentation of counterfactual data with causal
identification is proposed [2]. Here, causal words are employed to generate counterfactual data
using BERT sentence similarity.

Apart from data augmentation, there has been little research on studying the reason for the
failure of ML models for counterfactual data. Perception and reasoning are two crucial abilities
a model needs for successful problem-solving. Recent ML models such as DNNs have shown
extraordinary performance in various perception tasks [13]. However, such models hardly exploit
refined domain knowledge in symbolic form in order to support reasoning. Despite the recent
DNNs’ ability to consider relational and differential knowledge representation, they still lack
comprehensive logical reasoning across the dataset [14]. Hence, there has been an increasing
interest in combining ML with logical reasoning especially in the field of NLP. For instance,
Fuzzy Logic [15], Statistical Relational Learning [16], and Probabilistic Logic Programming [17]
have come into the picture to enhance traditional logic-based methods. However, they often
require handcrafted symbols as input from humans. There has been little research on alternative
ML models that have a learning ability comparable to DNN and also possess human-like logical
reasoning.

Since counterfactual inference is all about understanding the logical reasoning behind the
training data, we here incorporate a recent ML model, TM [10], which not only offers a
transparent learning mechanism but also facilitates human-level model interpretation [11]. Unlike
DNN attention weights that arguably explain predictions after training, the TM learning process

173

E

itself is fully transparent and produces logically explainable prediction [18]. Indeed, TM has been
widely accepted for its interpretability and logical reasoning [19, 20]. Hence, in this paper, we
propose and investigate how TM can deal with counterfactual test data as well as out-of-domain
distributions. We further show that it produces rules as human-like logical reasoning and is
more robust than DNNs. In particular, we explore its interpretability in-depth contrasting the
logic-based rules with the attention weights utilized by DNNs. Thereby, we analyse the reasons
that explain TM’s robustness against spurious correlations. To our knowledge, this is the first
time that a rule-based human-level interpretable model is used to tackle spurious correlations.

E.3 Detailed Implementation

E.3.1 Tsetlin Machine

TM is a recent ML model that learns correlations between features and labels using propositional
logic [10]. A propositional logic formula in TM, namely a clause, is a conjunction of negated and
non-negated forms of the input features. The negated or non-negated forms of the input features
are known as literals and are controlled by a set of Tsetlin Automata (TA). In a simple way, each
input feature corresponds to two TAs, i.e., TA and TA’. TA controls the original (non-negated)
form of the literal whereas TA’ controls its negation. Each TA decides either to include or exclude
the literal, and has two actions (Include/Exclude) with 2N states. When a TA moves from state 1
to N , action Exclude is performed. When a TA moves from state N + 1 to 2N , it performs the
Include action. Each move of TA is triggered by feedback in the form of Reward, Penalty, or
Inaction [10].

The most important component of TM is the clause, which represents a certain sub-pattern
among a particular set of patterns. This sub-pattern is in propositional AND-form making it highly
interpretable and amendable for logical understanding of the task. To have a clear comprehension
of what a clause looks like, let us consider a bag-of-words input X = [x1, · · · , xn], xk ∈ {0, 1},
k ∈ {1, . . . , n} where xk = 1 means the presence of a word in the sentence and n is the size of
the vocabulary. Let us assume there are γ classes in total. If each class needs α clauses to learn
the pattern, altogether the model is represented by γ × α clauses Cκ

ι , 1 ≤ κ ≤ γ, 1 ≤ ι ≤ α, as:

Cκ
ι =

∧
k∈Iκι

xk

 ∧

∧
k∈Īκι

¬xk

 , (A.1)

where Iκι and Īκι are non-overlapping subsets of the input variable indices, I ικ, Ī ικ ⊆ {1, · · · , n}, I ικ∩
Ī ικ = ∅. Iκι represents the set of indices of the features that the TAs include in original form,
while the set Īκι contains the indices of the features that the TAs include in negated form.

Here, clauses with odd indexes in each class are allocated positive polarity (+), whereas those
with even indexes are assigned negative polarity (-). Positive polarity clauses vote in favor of
the target class, while negative polarity clauses vote against it. As demonstrated in Eq. (F.3), a
summation operator aggregates them by subtracting the total number of negative votes from the
total number of positive votes.

fκ(X) = Σα−1
ι=1,3,...C

κ
ι (X)− Σα

ι=2,4,...C
κ
ι (X). (A.2)

174

E

Input
Clause 1 0
Literal 1 0 1 0

Include Literal
P(Reward) s−1

s
NA 0 0

P(Inaction) 1
s

NA s−1
s

s−1
s

P(Penalty) 0 NA 1
s

1
s

Exclude Literal
P(Reward) 0 1

s
1
s

1
s

P(Inaction) 1
s

s−1
s

s−1
s

s−1
s

P(Penalty) s−1
s

0 0 0

Table E.1: The Type I Feedback.

For γ classes, the final output ŷ is given by the argmax operator to classify the input based
on the highest net sum of votes, as shown in Eq. (A.3).

ŷ = argmaxκ (f
κ(X)) . (A.3)

E.3.2 Learning Rule-based Clauses for Counterfactual Inference

The step-by-step explanation for the learning process of TM can be found in [18]. Here we
explain briefly the learning of the rule-based clauses in TM for counterfactual inference via an
example. Let the sentence “Long, boring, blasphemous. Never have I been so glad to see ending
credits roll.” be the training sample that has negative sentiment. Each of the input words in the
sentence is controlled by two TAs where TA controls non-negated literal such as “Long”, and TA’
controls the negated form such as “¬Long”. The input that represents this particular sample is a
sparse Boolean bag-of-words. All the vocabulary words that are present in the given sentence
get the truth value 1, while those absent get the truth value 0. By explicitly representing missing
words in vector form like [0, 0, 0, 1, 0, · · · , 0, 1, 0, 0, 0, 1], the representation becomes dense.
However, logically, such representation not only captures the presence of a particular word,
but also equally well represents those words that are not present. This explicit bag-of-words
representation is ideal for TMs. This is because the TM can then pick informative negated
features in the very first hundred iterations of learning using the selection parameter specificity
(s). We detail the role of s next.

In TM, each TA that controls a literal decides the action “Include” or “Exclude” based on the
feedback it receives. There are two types of feedback: Type I Feedback and Type II Feedback.
Type I Feedback is activated when a given input feature is either correctly assigned to the target
label (true positive) or mistakenly ignored (false negative), while Type II Feedback is activated
when an input feature is wrongly assigned to the target label (false positive). From Tables E.1
and E.2 we can see that parameter s, s ≥ 1, plays a very important role in the learning process,
as it controls how strongly the model favours the action “Include”. It also determines how many
“fine-grained” sub-patterns the clauses will acquire. The greater the value of s, the more the
TAs are encouraged to include literals in their clauses. Since s decides which literals take part
in the clause for classification, it is vital to fine-tune it for reducing the vulnerability against
spurious correlation. For the above-mentioned training example, when s is large, the states for

175

E

Input
Clause 1 0
Literal 1 0 1 0

Include Literal
P(Reward) 0 NA 0 0

P(Inaction) 1.0 NA 1.0 1.0

P(Penalty) 0 NA 0 0

Exclude Literal
P(Reward) 0 0 0 0

P(Inaction) 1.0 0 1.0 1.0

P(Penalty) 0 1.0 0 0

Table E.2: The Type II Feedback.

the corresponding TAs in a clause after training are shown in Fig. E.1. As seen, the high value
of s enforces TA to include many literals in the clause, such as including “ending”, “boring”,
“credits”, “not friendly”, “not good”, and “not like”. Among the included literals, spurious
correlations that do not carry sentiment information, such as “ending” and “credits”, indeed
influence the model’s prediction on counterfactual data.

Exclude Include IncludeExclude

1 2 101 102 200100 1 2 101 102 200100

Figure E.1: States of TAs when s is high for a particular clause.

When we have a small s, as shown in Fig E.2, the number of included literals is reduced and
the majority, if not all, of the included literals are in the negated form. One can see from the
figure that the non-negated literals are now not enforced to be included in the clause. The states
in TA for “ending”, “boring”, and “credits” have not reached to action “Include”. Nevertheless,
TM still learns negated features easily in contrast to non-negated features due to sparse input
representation thereby not affecting the states of “not friendly”, “not good”, and “not like”.

E.3.3 Robustness against Counterfactual Sample

In this subsection, we will detail the reason why a trained TM model is robust and insusceptible
to spurious correlations. Let us consider a model trained with a low value of s = 2 and two
sentences with different sentiment labels: S1 with positive and S2 with negative sentiment. From
Fig E.3, we can see the behavior of trained clauses for the negative class and the positive class
for the original samples. The rule-based logic that is formulated by TM is in propositional form,
ANDing several literals. The clause associated with propositional logic becomes 1 if an input

176

E

Exclude Include IncludeExclude

1 2 101 102 200100 1 2 101 102 200100

Figure E.2: States of TAs when s is low for a particular clause.

satisfies the conjunction.
When context S1 is received by the model, it correctly predicts negative sentiment because it

triggers all the five clauses in the negative class, whereas only one clause for the positive class.
Similarly, when S2 is given, it predicts positive sentiment because the input triggers all five
clauses in the positive class compared to only two clauses in the negative class.

Long, boring, blasphemous. Never have
I been so glad to see ending credits roll

How truly friendly, charming and cordial
is this unpretentious old serial

Positive Class Clauses

Negative Class Clauses

Figure E.3: Clause triggered by original samples S1 and S2 on both classes when s = 2.

Now consider two human generated counterfactual samples Scf
1 for S1 and Scf

2 for S2 as
shown in Fig. E.4. For S1, the word “boring” is replaced by “fascinating”; “blasphemous” is
replaced by “soulful”; and “glad” is replaced by “sad”. Similarly, for S2, the word “friendly”
is replaced by “depressing”; “charming” is replaced by “charmless”; and “unpretentious” is
replaced by “pretentious”. This means that the labels for the corresponding counterfactual
samples are now flipped. When Scf

1 is sent to the trained TM model with s = 2, it only triggers
two clauses from the negative class and three clauses in the positive class. Similarly, when Scf

2

is given to the model, it triggers four clauses in the negative class but only one clause in the
positive class. Even though the probability of being in a class decreases due to the reduction in
clause score, it still manages to predict such counterfactual samples correctly.

Since most of the entries in the sparse bag-of-word representation are zeros, the majority
of literals presented in the clause will be in the negated form after a few iterations. With a
comparatively small number of included literals due to the small s, the majority of clauses most
likely becomes monotone in the negated form. Negated literals provide a more general form of
the features that are not presented in a particular input sample thereby being less sensitive to
spurious correlations as compared with the non-negated literals. We can clearly observe from
Fig. E.4 that the non-monotone clauses that have non-negated features are the ones that fail

177

E

to capture counterfactual reasoning. This means monotonous clauses that have only negated
features are more insusceptible to such modified data.

Long, fascinating, soulful. Never have I
been so sad to see ending credits roll

How truly depressing, charmless, and
unpleasant is this pretentious old serial

Negative Class Clauses

Positive Class Clauses

Figure E.4: Clauses triggered by counterfactual samples Scf
1 and Scf

2 on both classes when
s = 2.

E.4 Experiments and Results

In this section, we present experimental results for analyzing the performance of TM on coun-
terfactual data. As we have already discussed the significance of s for inheriting robustness
in the model, we experiment with different values of s on the dataset designed by [5]. This
dataset has been developed using IMDB reviews that consist of 50k samples divided equally
across train/test splits after removing 20% of reviews. Among them, 2.5k reviews have been
split into training, validation, and testing of 1707, 245, and 488 respectively. These reviews
are modified using Amazon’s Mechanical Turk crowdsourcing so that the labels are flipped to
generate counterfactual samples. In addition, to evaluate the out-of-domain performance of the
proposed model, we used Amazon reviews [21] on data aggregated over six domains, i.e., beauty,
fashion, appliances, gift cards, magazines, and software, SemEval Twitter sentiment analysis
[22], and Yelp challenge dataset.

We used the original 1.7k samples as the training dataset to evaluate the robustness of the
model on human-generated counterfactual test data of size 488. We also train the model using
counterfactual data of size 1.7k and evaluate it on the original test samples of size 488. The
performance of the model for various values of s is shown in Table E.3. Other parameters of
TM are the same for all the training datasets selected in the paper, with 3000 clauses per class
and the threshold (T) value of 80 × 16. These parameters are selected by trial and error. For
evaluating the behavior of s, we only validate on the test samples that are not from the same
training data, and the complete performance evaluation is detailed later in the paper. Here, we
use the features extension technique as the preprocessing as in [11]. As seen in Table E.3, the
accuracy of the model trained on original training samples achieves 72.1% on counterfactual test
data when s = 2, and it decreases as s increases. Similarly, the accuracy of the model trained
on counterfactual training samples achieves 65.20% when s = 2 and becomes decreasing as s
increases. This indicates that lowering the value of s fine grains the pattern in the clause with
negated literals, which confirms the robustness against counterfactual data as discussed earlier.

To compare the performance of our model with the state of the art, extensive experiments
have been carried out. Since s = 2 performs the best against counterfactual samples, we utilize

178

E

Training Data
s = 2 s = 3 s = 5 s = 10 s = 15 s = 20 s = 30 s = 50

Orig CF Orig CF Orig CF Orig CF Orig CF Orig CF Orig CF Orig CF
Orig (1.7k) - 72.1 - 71.1 - 68.87 - 65.53 - 64.73 - 60.64 - 58.63 - 54.31
CF (1.7k) 65.20 - 63.92 - 62.45 - 62.92 - 61.01 - 59.01 - 57.70 - 54.27 -

Table E.3: Accuracy of TM on Counterfactual (CF) test data using Original (Orig) training
samples and vice-versa for various values of s.

Training Data
SVM NB ELMo Bi-LSTM BERT TM

Orig CF Orig CF Orig CF Orig CF Orig CF Orig CF
Orig (1.7k) 80.0 51.0 74.9 47.3 81.9 66.7 79.3 55.7 87.4 82.2 85.65 73.56

(84.30 ± 0.78) (72.1 ± 0.4)
CF (1.7k) 58.3 91.2 50.9 88.7 63.8 82.0 62.5 89.1 80.4 90.8 65.98 92.20

(65.20 ± 0.80) (91.09 ± 0.55)
Orig (19k) 87.8 60.9 84.3 42.8 86.5 64.3 86.3 68.0 93.2 88.3 88.14 73.77

(87.94 ± 0.16) (72.46 ± 0.70)
Orig + CF (3.4k) 83.7 87.3 86.1 91.2 85.0 92.0 81.5 92.0 88.5 95.1 84.22 91.2

(83.45 ± 0.42) (89.95 ± 0.75)

Table E.4: Experiment results of various models trained using Original and Counterfactual
training dataset on their respective opposite test data. The upper results show the best reproducible
accuracy and lower ones represent the mean and standard deviation of the last 50 epochs when
running the model for five times.

this value for performance comparison. In addition to DNN based models, we also include
typical interpretable linear models in our comparison. The models are mainly taken from [5], as:
•Standard Methods: We train linear standard model such as SVM and Naive Bayes (NB) for
sentiment classification using “scikit-learn” [23]. •Bi-LSTM: For training Bi-LSTM, Kaushik
et al. [5] restricted vocabulary of 20k, replacing out-of-vocabulary as UNK tokens. The model
consists of bidirectional LSTM with hidden dimension 50, recurrent dropout 0.5, and global max
pooling following the embedding layer. •ELMo: Kaushik et al. [5] computed contextualized
word representation (ELMo) using character based word representation and bidirection LSTM
[24] using weighted sum of representation of 1024 dimensions. •BERT: Kaushik et al. [5]
used an off-the-shelf uncased BERT Base model to fine tune each task. In order to consider the
BERT’s sub tokenization, token length is set at 350 and trained for 20 epochs.

As we can see from Table E.4, when the original data is used as the training samples, SVM’s
accuracy on CF test data drops to 51.0% compared with that of the original test data, i.e., 80%. A
similar trend is observed for NB, Bi-LSTM, and ELMo. Interestingly, the performance of BERT
suffers less perhaps due to the benefit of large pretrained information. However, disregarding
the pre-trained language model of BERT, our proposed TM reaches 73.56% and outperforms
all of the remaining models including 66.7% of ELMo. In the case of CF data as the training
samples, the accuracy on original test samples by previous best model ELMo is 63.8% except
BERT. Again, our proposed TM model outperforms all of them except BERT, achieving 65.98%.
Although the main aim of the paper is to evaluate TM on different/counterfactual distribution and
it is not necessary to augment both original and CF data, we still show the performance using
augmented data as well as the remaining IMDB data of size 19k as training samples, and it can
be seen that the performance of TM is on par with the other models.

Here, we demonstrate the performance of various models trained using original and counter-
factual data on out-of-domain balanced test data, as shown in Table E.5. For a comparison, we

179

E

again use preprocessing for feature extension from Glove embedding as in [11]. The results of
other models such as SVM, NB, Bi-LSTM, ELMo and BERT have been taken from [5]. Here
when original data is used as the training sample, understandably, BERT outperforms the other
models in all the cases because of its access to huge data and better language understanding than
traditional models. Disregarding BERT and Elmo as these have huge pretrained information,
TM outperforms all the cases of out-of-domain datasets when trained on only original 1.7k
samples as intended. However, when the CF data is added to the original training sample, the
performance of all the models increases by a big margin but the change for TM is not very
significant compared with other models. This results in some lower accuracy compared to SVM
and NB in Semeval and Yelp reviews. This is because TM has been initialized with a low value
of s = 2 and most of the features in the clauses are generally in the negated form. For this reason,
TM is already less sensitive to spurious correlations and the additional CF training data does
not impact much. Hence, only with original training sample of 1.7k, TM outperforms all the
previous model combating spurious correlations.

Training Data SVM NB ELMo Bi-LSTM BERT TM
Accuracy on Amazon Reviews

Orig (1.7k) 74.7 66.9 79.1 65.9 80.0 76.2
Orig + CF (3.4k) 77.1 82.6 78.4 82.7 85.1 78.5

Accuracy on Semeval 2017 (Twitter)
Orig (1.7k) 61.2 64.6 69.5 55.3 79.3 65.2
Orig + CF (3.4k) 66.5 73.9 70.0 68.7 82.9 66.2

Accuracy on Yelp Reviews
Orig (1.7k) 81.8 77.5 82.0 78.0 85.3 82.5
Orig + CF (3.4k) 87.6 89.6 87.2 86.2 89.4 85.7

Table E.5: Results on out-of-domain balanced test data.

Really good movie. Maybe the best I've ever seen. Alien invasion,
a la The Blob, with crazy good acting. Meteorite turns beautiful
woman into a host body for nasty tongue. Engaging plot, great

tongue. Absurd comedy worth watching. Maybe don't wash your
hair or take out the trash but take time out to watch this movie.

Really good movie. Maybe the best I've ever seen. Alien invasion,
a la The Blob, with crazy good acting. Meteorite turns beautiful
woman into a host body for nasty tongue. Engaging plot, great

tongue. Absurd comedy worth watching. Maybe don't wash your
hair or take out the trash but take time out to watch this movie.

Really good movie. Maybe the best I've ever seen. Alien invasion,
a la The Blob, with crazy good acting. Meteorite turns beautiful
woman into a host body for nasty tongue. Engaging plot, great

tongue. Absurd comedy worth watching. Maybe don't wash your
hair or take out the trash but take time out to watch this movie.

Sentiment LabelWord's Weightage in the Sentence

Bi-LSTM with
Attention Visualization

Model

Word's weightage
based on clause

score
(TM with s=20)

Word's weightage
based on clause

score
(TM with s =2)

Original: Positive
Predicted: Negative

Original: Positive
Predicted: Negative

Original: Positive
Predicted: Positive

Figure E.5: Visualization of words’ weightages of attention based model vs TM on a counterfac-
tual sample.

180

E

E.5 A Case Study of TM vs Bi-LSTM

In this section, we will compare the weightage of each word in the sentence responsible for a
particular prediction. We here visualize the attention weight to explain the model’s prediction.
For TM, we use the clause score for each word in the sentence and visualize it in a similar
way to the attention model. To have a clear interpretation of how s impacts the counterfactual
data, we represent two scenarios where the model is trained with s = 2 and s = 20. From
Fig. E.5, we can see that a particular sample has been predicted incorrectly by the Bi-LSTM
model. The scoring of the word shows that Bi-LSTM assigns the highest weightage to spurious
correlations such as ever, seen, Alien, Blob, with, and wash. Although it gives attention to some
genuine correlations such as crazy, worth, and beautiful, the weightage is low compared with
spurious correlations thereby making a wrong prediction. For TM with s = 20, it has high
clause scores on spurious correlations such as really, movie, acting, plot, and woman. Although
the TM assigns weightage to words such as beautiful, good, and engaging, the weightage for
negative sentiment words such as don’t, absurd, and nasty are much higher thereby predicting it
incorrectly to negative sentiment. On the other hand, for TM with s = 2, it assigns high scores to
genuine correlations such as beautiful, engaging, best, good, comedy and great as compared with
spurious correlations such as movie, woman, Blob, time, and watch thereby correctly predicting
a positive sentiment.

E.6 Conclusions

In this paper, we employ TM to design a robust text classification against spurious correlations.
TM learns the pattern using a set of clauses that are in the form of propositional logic. Such
propositional logic is a combination of features in either non-negated or negated form. Since
the propositional logic is human interpretable, it is easy to extract rule-based reasoning from
TM. Our methods demonstrate that such a rule can be controlled or fine-tuned by modifying
the parameter specificity s. We show that by keeping the value of s small, we can filter the
clause from non-monotone to monotone where a majority of features are in the negated form
thereby removing spurious correlations and forcing the model to rely on genuine correlations.
Experiments results have shown that the proposed s-controlled TM outperforms various existing
models on counterfactual test data. In addition, unlike DNNs, the human-level interpretation
obtained from the rule-based reasoning of TM gives a complete understanding of how the model
achieves its robustness.

181

E

E

Bibliography

[1] A. Sauer and A. Geiger, “Counterfactual generative networks,” in ICLR, (Online), 2021.

[2] Z. Wang and A. Culotta, “Identifying spurious correlations for robust text classification,” in
Findings of the EMNLP 2020, (Online), pp. 3431–3440, ACL, 2020.

[3] E. Wulczyn, N. Thain, and L. Dixon, “Ex machina: Personal attacks seen at scale,” in
International Conference on World Wide Web, (Perth, Australia), p. 1391–1399, WWW,
2017.

[4] S. Kaufman, S. Rosset, C. Perlich, and O. Stitelman, “Leakage in data mining: Formulation,
detection, and avoidance,” ACM Trans. Knowl. Discov. Data, vol. 6, 2012.

[5] D. Kaushik, E. Hovy, and Z. Lipton, “Learning the difference that makes a difference with
counterfactually-augmented data,” in ICLR, (Online), 2020.

[6] C. Rudin, “Stop explaining black box machine learning models for high stakes decisions
and use interpretable models instead,” Nature Machine Intelligence, vol. 1, pp. 206–215,
2018.

[7] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to
align and translate,” in ICLR, (California, USA), 2015.

[8] S. Serrano and N. A. Smith, “Is attention interpretable?,” in Proceedings of ACL, (Florence,
Italy), pp. 2931–2951, ACL, 2019.

[9] G. Brunner, Y. Liu, D. Pascual, O. Richter, M. Ciaramita, and R. Wattenhofer, “On
identifiability in transformers,” in ICLR, (Addis Ababa, Ethiopia), 2020.

[10] O.-C. Granmo, “The tsetlin machine - a game theoretic bandit driven approach to optimal
pattern recognition with propositional logic,” 2018.

[11] R. K. Yadav, L. Jiao, O.-C. Granmo, and M. Goodwin, “Enhancing interpretable clauses
semantically using pretrained word representation,” in BlackboxNLP, (Punta Cana, Domini-
can Republic), pp. 265–274, ACL, 2021.

[12] K. Lu, P. Mardziel, F. Wu, P. Amancharla, and A. Datta, Gender Bias in Neural Natural
Language Processing, pp. 189–202. Springer International Publishing, 2020.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolu-
tional neural networks,” Communications of the ACM, vol. 60, pp. 84 – 90, 2012.

[14] R. Jia and P. Liang, “Adversarial examples for evaluating reading comprehension systems,”
in EMNLP, (Copenhagen, Denmark), pp. 2021–2031, ACL, 2017.

[15] J. Goguen, “Zadeh l. a.. fuzzy sets. information and control , vol. 8 (1965), pp. 338–353.
zadeh l. a.. similarity relations and fuzzy orderings. information sciences , vol. 3 (1971), pp.
177–200.,” Journal of Symbolic Logic, vol. 38, pp. 656–657, 1973.

183

[16] L. Getoor and B. Taskar, “Introduction to statistical relational learning,” 2007.

[17] L. D. Raedt and A. Kimmig, “Probabilistic (logic) programming concepts,” Machine
Learning, vol. 100, pp. 5–47, 2015.

[18] R. K. Yadav, L. Jiao, O.-C. Granmo, and M. Goodwin, “Human-Level Interpretable
Learning for Aspect-Based Sentiment Analysis,” in Proceedings of AAAI, Vancouver,
Canada, AAAI, 2021.

[19] J. Lei, T. Rahman, R. Shafik, A. Wheeldon, A. Yakovlev, O.-C. Granmo, F. Kawsar, and
A. Mathur, “Low-Power Audio Keyword Spotting using Tsetlin Machines,” 2021.

[20] K. D. Abeyrathna, B. Bhattarai, M. Goodwin, S. R. Gorji, O.-C. Granmo, L. Jiao, R. Saha,
and R. K. Yadav, “Massively parallel and asynchronous tsetlin machine architecture sup-
porting almost constant-time scaling,” in ICML, pp. 10–20, PMLR, 2021.

[21] J. Ni, J. Li, and J. McAuley, “Justifying recommendations using distantly-labeled reviews
and fine-grained aspects,” in EMNLP-IJCNLP, (Hong Kong, China), pp. 188–197, ACL,
2019.

[22] S. Rosenthal, N. Farra, and P. Nakov, “SemEval-2017 task 4: Sentiment analysis in Twitter,”
in Proceedings of the 11th SemEval-2017, (Vancouver, Canada), pp. 502–518, ACL, 2017.

[23] B. Kim, S. Ryu, and G. Lee, “Two-stage multi-intent detection for spoken language
understanding,” Multimedia Tools and Applications, vol. 76, pp. 11377–11390, 2016.

[24] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer,
“Deep contextualized word representations,” in NAACL: Human Language Technologies,
(New Orleans, Louisiana), pp. 2227–2237, ACL, 2018.

184

F

Appendix F

Paper F

Title: Enhancing Attention’s Explanation Using Interpretable Tsetlin
Machine

Authors: Rohan Kumar Yadav 1,, Dragoş Constantin Nicolae 2,

Affiliation: 1, University of Agder, Faculty of Engineering and Science, 4879,
Grimstad, Norway
2, Research Institute for Artificial Intelligence “Mihai Drăgănescu”
050711 Bucharest, Romania

Journal: Algorithms, MDPI, 2022.
DOI: .

185

https://doi.org/10.3390/a15050143

F

F

Enhancing Attention’s Explanation Using Interpretable Tsetlin
Machine

Rohan Kumar Yadav 1, Dragoş Constantin Nicolae 2

1 Department of Information and Communication Technology
Faculty of Engineering and Science, University of Agder

4879, Grimstad, Norway
2 Research Institute for Artificial Intelligence “Mihai Drăgănescu”

050711 Bucharest, Romania
E-mails: rohan.k.yadav@uia.no, dragosnicolae555@gmail.com

Abstract — Explainability is one of the key factors in Natural Language Processing (NLP)
specially for legal documents, medical diagnosis, and clinical text. Attention mechanism
has been a popular choice for such explainability recently by estimating the relative im-
portance of input units. Recent research has revealed, however, that such processes tend
to misidentify irrelevant input units when explaining them. This is due to the fact that
language representation layers are initialized by pre-trained word embedding that is not
context-dependent. Such a lack of context-dependent knowledge in the initial layer makes
it difficult for the model to concentrate on the important aspects of input. Usually, this
does not impact the performance of the model, but the explainability differs from human
understanding. Hence, in this paper, we propose an ensemble method to use logic-based
information from the Tsetlin Machine to embed it into the initial representation layer in
the neural network to enhance the model in terms of explainability. We obtain the global
clause score for each word in the vocabulary and feed it into the neural network layer as
context-dependent information. Our experiments show that the ensemble method enhances
the explainability of the attention layer without sacrificing any performance of the model
and even outperforming in some datasets.

187

F

F.1 Introduction

In natural language processing, text categorization is a crucial task (NLP) [1, 2] and neural
network models are the ones to dominate state-of-the-art approaches. However, these models are
often assumed to be blackbox in nature. The models’ opacity has become a serious impediment
to their creation, implementation, and improvement, especially in crucial tasks like medical
diagnosis [3] and legal document inspection [4]. As a result, explainable text classification
has become a major topic, with the objective of providing end-users with human-readable
descriptions of the classification logic [5, 6, 7, 1].

The attention mechanism is a prominent technique among current explainability approaches
that identify essential sections of the input for the prediction job by offering a distribution across
attended-to-input units [8]. Many NLP tasks, such as text categorization, question answering,
and entity identification, have shown outstanding results using attention-based models [8, 9, 2].
In particular, in many NLP systems, the self-attention mechanism that underpins the Transformer
design has played a key role [10, 11]. Despite this, recent research has revealed that learned
attention weights are frequently unrelated to the relevance of input components as judged by
various explainability approaches [12], and that alternative attention distributions can provide
identical predictions [13, 14].

Various alternative approaches could replace attention-based neural networks for explainable
NLP such as decision tree and logistic regression. However, they suffer from low performance
compared to neural networks. In addition to this logistic regression does not provide a logical
explanation but provides mathematical weights for selected inputs [15]. On the other hand,
decision trees are only suited for a limited dataset size. It becomes extremely difficult to get the
explainability once the trees get more complex. Due to these limitations, there has been a limited
study in obtaining a logical explanation for NLP classification. A recent study has found that
Tsetlin Machine (TM) has been a promising tool for rule-based explanation in image, text, and
numerical data [16, 17, 18, 19]. TM is an interpretable rule-based model that uses conjunctive
clauses to learn basic and complicated correlations. Unlike Deep Neural Netowrks (DNNs)
and basic rule-based systems, TM learns rules in the same way that humans do, using logical
reasoning, and it does so in a visible and interpretable manner [16, 20]. TM has shown that
it obtains a good trade-off between accuracy and interpretability on many NLP tasks [21, 22].
However, there lie some limitations such as boolean bag-of-words input and incapable of using
pre-trained information.

One efficient way to deal with the above-mentioned problem is to use prerequisite knowledge
to enhance the input layer for better interpretation. Integrating human rationales as supplementary
supervision information for attention learning is a promising way to enhance the explainability
of attention-based models. Human rationales have previously been found to be useful input for
increasing model performance and discovering explainable input in model prediction [23, 24].
However, obtaining such human rationales is an expensive and time-consuming process. Hence,
to make it more easy and efficient, we use a logic-based model TM that mimics human-level
understanding to generate prerequisite information to initialize the input layer of the neural
network. Since TM can be explained by logic and rules, the information it provides can be easily
explained to make the attention layer focus on important input tokens.

In this paper, we train TM on two movie review datasets and leverage the clause score of TM

188

F

for each word in the vocabulary. We then use this prerequisite information of each word as initial
information for the input layer in the neural network. We use Bidirection Gated Recurrent Unit
(Bi-GRU) [25] for language representation for neural networks and Glove [26] to initialize the
word embedding. In addition to this, we multiply the input embedding layer with prerequisite
information of each word from TM. This makes the attention layer on top of Bi-GRU focus on
important words.

F.2 Related Work

Machine learning explainability has lately received a lot of attention, owing to the necessity for
transparency [5, 27]. Existing explainability approaches may be divided into two types: post-hoc
and intrinsic explainability. The goal of post-hoc explainability is to provide explanations for a
model that already exists. In the feature space, a representative technique approximates decisions
of the model with an explainable technique (e.g., a linear model) [5]. Generative Explanation
Framework (GEF) [28] is a recent development in this field that aims to explain a generic encoder-
predictor architecture by concurrently generating explanations and classification results. The
goal of intrinsic explainability is to create self-explanatory models. This can be accomplished
by enforcing feature sparsity [29], representation disentanglement [30], or sensitivity to input
characteristics through explainability requirements in model learning. Attention mechanisms,
that identify sections of the input that are considered by the model for specific output predictions,
are a more prevalent technique to explain individual predictions [31, 8]. These attention processes
have long been essential in NLP, not just because of their explainability, but also because of
the improvements they provide to model performance [10, 11]. An empirical study recently
questioned their effectiveness in explaining model performance, pointing out that attention distri-
butions are contrary with the importance of input features measured by gradient-based methods,
and those adversarial distributions can be found yielding similar model performance [13]. These
discoveries have sparked heated debates, such as how attention mechanisms provide larger
weights to key input features for a specific task even when the model for prediction changes [14].

The concept of adding human rationales for improvement of the model may be traced
back to a situation in which a human teacher highlights sections of text in a document as a
justification for label annotation [23]. By restricting the prediction labels, the logic is integrated
into the loss function of SVM classifier. Similar concepts have been investigated for neural
network models [24] and various methods of human reason integration, such as learning a
mapping between human rationales and machine attention [32] or assuring variety among
hidden representations learned at different time steps [33]. Even though recent studies in human
computation [34] have shown that asking workers to provide human annotation rationales—by
headlining the supporting text excerpts from the given context—requires no additional annotation
effort, reassigning human rationales in the previous datasets requires additional time and cost.
Hence, there is the need for a human explainable model that can substitute the human-in-loop
system as prerequisite knowledge for the neural network model.

In this paper, we propose an alternative for human rationales by using Tsetlin Machine and
its explainability. TM consists of several clauses in the form of propositional logic. Each feature
in TM represents the collection of the clauses for a particular classification model. Such clause

189

F

score also represents the weightage of each feature in the model. Since TM is easily explainable,
it makes sense to use this explanation as ensemble information for the neural network.

F.3 Proposed Architecture: TM Initialized Attention Model

Here, we discuss the architecture of the model that ensemble the information from TM into
neural network. First we explain the architecture of TM and then process to obtain the clause
score.

F.3.1 Clause Score from Tsetlin Machine Architecture

A revolutionary game-theoretic strategy that organizes a collection of decentralized team of
Tsetlin Automata is at the heart of the TM (TAs). Based on disjunctive normal form, the
strategy directs the TAs to learn arbitrarily complicated propositional formula in the form of
conjunctive form [35, 36]. A TM is interpretable in a way that it decomposes issues into self-
contained sub-patterns that may be interpreted separately, notwithstanding its ability to learn
complicated nonlinear patterns. Each sub-pattern is represented by a conjunctive sentence, which
is a series of literals, each of which represents an input bit or its negation. As a result, sub-pattern
representation and evaluation are both Boolean. In comparison to other approaches, this makes
the TM computationally efficient and hardware friendly [37, 38].

TM is a new classification approach based on a team of Tsetlin Automata that manipulates
phrases in propositional logic. TA is a deterministic automaton with a fixed structure that learns
the best action from a collection of actions provided by the environment. A two-action TA with
2N states is shown in Figure F.1. The states from 1 to N are referred to as Action 1, whereas the
states from (N + 1) to 2N are referred to as Action 2. TA conducts the action depending on the
current state and interacts with the environment during each iteration. This, in turn, causes the
environment to issue a random reward or penalty based on an unknown probability distribution.
If TA is rewarded, it advances deeper into the state; if it is penalized, it moves closer to the center
of the state, weakening the preformed action, and finally jumping to the side of the other action.
Each input bit in TM is represented by two TAs, TAand TA’. The original bit of the input sample
is controlled by TA, while the negation is controlled by TA’. As a result, the TM, which is made
up of clauses, will eventually converge to the desired pattern. There are two sorts of feedback
(reward or penalty) supplied to the TM: Type I and Type II feedback. The TA for the training
samples is given rewards or penalties based on these feedback types. The both feedbacks are
shown in Tables F.1 and F.2 respectively.

Figure F.1: The two-action TA and its transition in TM.

In regards to NLP, TM heavily relies on the Boolean Bag-of-words (BOW) given by X =

190

F

Input
Clause 1 0
Literal 1 0 1 0

Include Literal
P(Reward) s−1

s
NA 0 0

P(Inaction) 1
s

NA s−1
s

s−1
s

P(Penalty) 0 NA 1
s

1
s

Exclude Literal
P(Reward) 0 1

s
1
s

1
s

P(Inaction) 1
s

s−1
s

s−1
s

s−1
s

P(Penalty) s−1
s

0 0 0

Table F.1: The Type I Feedback.

Input
Clause 1 0
Literal 1 0 1 0

Include Literal
P(Reward) 0 NA 0 0

P(Inaction) 1.0 NA 1.0 1.0

P(Penalty) 0 NA 0 0

Exclude Literal
P(Reward) 0 0 0 0

P(Inaction) 1.0 0 1.0 1.0

P(Penalty) 0 1.0 0 0

Table F.2: The Type II Feedback.

[x1, x2, x3, . . . , xn]. Let l be the number of clauses that represent each class of the TM, covering
q classes altogether. Then, the overall learning problem is solved using l× q clauses. Each clause
Cj

i , 1 ≤ j ≤ q, 1 ≤ i ≤ l of the TM is given by :

Cj
i =

∧
k∈Iji

xk

 ∧

∧
k∈Īji

¬xk

 , (F.1)

where Iji and Īji are non-overlapping subgroup of the input variable indices, I ij, Ī ij ⊆ {1, . . . ,m}, I ij∩
Ī ij = ∅. The subgroup decide that which of the input variables to participate in the clause, and
whether they are in the original form or the negated. The indices of input features in I ij represent
the literals that are included as original form of the literals, while the indices of input features in
Ī ij correspond to the negated ones. Among the q clauses of each class, clauses that are indexed
with odd number are assigned positive polarity (+) whereas those with even indexed are assigned
negative polarity (−). The clauses with positive polarity vote for the true target class and those
with negative polarity vote against it. A summation operator aggregates the votes by subtracting
the total number of negative votes from positive votes, as shown in Equation (F.2).

f j(X) = Σl−1
i=1,3,...C

j
i (X)− Σl

i=2,4,...C
j
i (X). (F.2)

191

F

For q number of classes, the predicted output y is given by the argmax operator which classi-
fies the input features based on the highest sum of votes obtained, as shown in Equation (F.3).

ŷ = argmaxj
(
f j(X)

)
. (F.3)

Once the model is trained with a particular dataset, we can explore the clauses that holds
information of combination of literals in propositional form. Such information is humanly inter-
pretable and can be used for downstream applications of NLP. Here, we explore the weightage of
each word in the model. We pass each word in the vocabulary into the TM and obtain the clause
score. The clause score is calculated by:

SCxk
= |fκ=tp(Xxk=1)− Σfκ=fp(Xxk=1)|. (F.4)

Here tp refers to true prediction, fp refers to false prediction, |.| refers to the absolute value,
and k = 1, 2, . . . , n, where n is the number of vocabularies. We then create the input map for
each input sentence with the score obtained for each word which will then fed to neural network
initial embedding layer.

F.3.2 Attention Based Neural Network

Here we explain the attention-based neural network for text classification where we use conven-
tional Bi-GRU as the language representation layer and attention on top of it.

Because of its linked hidden layers, where the internal states are used to process data in a
sequential fashion, recurrent neural networks (RNNs) [39] have lately become the standard for
NLP. RNNs, on the other hand, have several drawbacks that have led to the creation of versions
like LSTM and GRU. The GRU, like the LSTM unit, regulates the flow of information without
using a memory unit, making it more efficient with near-lossless performance [40]. GRU also
overcomes the issue of vanishing gradients and gradient explosions in vanilla RNN. Our selected
model consists of a Bi-GRU layer on top of embedding layer initialized with Glove embedding.
This layer consists of a attention layer on top of Bi-GRU. The overall architecture of proposed
model is shown in Figure F.2.

Consider a sentence “This is wonderful movie.” which is fed to the embedding layer
initialized by Glove embedding. On the other hand, we obtain the clause score for each word in
the sentence and feed to the embedding layer to match the dimension of input sentence embedding.
Then both the embedding layer is passed to multiplication layer, where both are multiplied
element wise. The output of the multiplication layer is then fed to the Bi-GRU having multiple
hidden layers. Let us assume that the input to Bi-GRU is given by X = [x1, x2, x3, . . . , xk]

where k is the padded length of the input sentence. This information is passed to Bi-GRU layer.
In GRU, there are two types of gates: update gates and reset gates. The update gate determines
how much previous data must be brought into the current state and how much new data must be
introduced.

On the other hand, reset gate decides how much information from the previous steps is passed
into the current state ht. Here, ht is the output from the GRU at time step t and zt means the
update gate. At a specific time step t, the new state ht is given by:

ht = (1− zt)⊙ ht−1 + zt ⊙ ht, (F.5)

192

F

where ⊙ represents the element-wise multiplication. To update zt, we have

zt = σ (Wztxt + Uztht−1 + bzt) . (F.6)

Here, xt is each word of the sentence at time step t that is passed into the network unit which
is then multiplied with its own weight Wzt . Similarly, ht−1 represents the information of previous
unit and is multiplied with its own weight Uzt and bzt is the bias associated with update state.
The current state ht is updated using reset gate rt by

ht = tanh (Whtxt + rt ⊙ (Uht) + bht) . (F.7)

At rt, the candidate state of step t can get the information of input xt and the status of ht−1

of step t− 1. The update function of rt is given by

rt = σ (Wrtxt + Urtht−1 + brt) , (F.8)

where Wrt and Urt are the weights associated with the reset state and brt is the bias.

The Bi-GRU consists the forward GRU layer (
→
ht) that models the input sentence from step 0

to t and the backward GRU (
←
ht) from t to 0.

→
ht =

→
GRU(xt), t ∈ [1, T], (F.9)

←
ht =

←
GRU(xt), t ∈ [T, 1], (F.10)

ht =
[→
ht,
←
ht

]
. (F.11)

193

F

Figure F.2: The two-action TA and its transition in TM.

As we all know, not all of the words in the context contribute equally to text categorization.
As a result, an attention layer is allocated to the context to prioritize significant words. Attention
layer is fed on top of Bi − GRU to learn the weight αt for each hidden state ht obtained at
time step t. Since there are k inputs in the padded sequences, time step t will be from 1 to
k. The weighting vector α = (α1, α2, α3, . . . , αk) is calculated based on the output sequence
H = (h1, h2, h3, . . . , hk). The attention vector s1 for AL1 is calculated based on the weighted
sum of these hidden states, as:

s1 =
k∑

t=1

(αtht) , (F.12)

where the weighted parameter α1
t is calculated by:

αt =
exp

(
uT
t uw

)∑
t exp (u

T
t uw)

, (F.13)

194

F

where ut = tanh (Wwht + bw). Here Ww and ht are the weight matrices and bw represents the
bias. The parameter uw demonstrates context vector that is different at each time step, which is
randomly initialized and learned jointly during the training process.

F.4 Experiments and Results

Here, we demonstrate the experiments and the result on the proposed model for enhancing the
explanation of attention layer in text classification. We use two sentiment classification datasets
for evaluation. They are:

• MR is a movie review dataset for binary sentiment classification with just one sentence
per review [41]. There are 5331 positive reviews and 5331 critical reviews in the corpus.
In this study, we used a training/test split from [42] (https://github.com/mnqu/
PTE/tree/master/data/mr (24th Feb, 2022).).

• Reuters The Reuters 21,578 dataset has two subsets: R52 and R83 (all-terms version). R8
is divided into eight categories, including 5485 training and 2189 exam papers. R52 is
divided into 52 categories and 6532 training and 2568 test papers.

We employ Keras [43] to implement our model. Adam [44] is used as the models’ optimiza-
tion method with the learning rate of 1 × e−3. Additionally, we adopted Dropout [45] as the
regularization strategy and the probability of Dropout was kept to be 0.25. Words are initialized
with Glove [26] of 300-dimension word embedding. The batch size was 128 and was run for 100
epochs in the test datasets for obtaining the best results.

Since, the main purpose of this paper is to enhance the explanation of the attention layer,
we demonstrate the performance of the proposed model with the relatable models to show the
impact of each model. The comparable state-of-the-arts are explained below:

• TF-IDF+LR: Bag-of-words model with inverse document frequency weighting for term
frequency. The classifier is based on logistic regression.

• CNN: CNN-rand uses arbitrarily initialized word embeddings [46].

• LSTM: The LSTM model that we employ here is from [47], representing the entire text
using the last hidden layer. We used both the model that is using pretrained embeddings
and without using.

• Bi-LSTM: Bi-directional LSTMs are widely used for text classification that models both
forward and backward information.

• PV-DBOW: PV-DBOW is a paragraph vector model where the word order is not consid-
ered and is trained with Logistic Regression used as a softmax classifier [48].

• PV-DM: PV-DM is a paragraph vector model, with word ordering taken into consideration
[48].

• fastText: This baseline uses the average of the word embeddings provided by fastText as
document embedding. The embedding is then fed to a linear classifier [49].

195

https://github.com/mnqu/PTE/tree/master/data/mr
https://github.com/mnqu/PTE/tree/master/data/mr

F

• SWEM: SWEM applies simple pooling techniques over the word embeddings to obtain a
document embedding [50].

• Graph-CNN-C: A graph CNN model uses convolutions over a word embedding similarity
graph [51], employing a Chebyshev filter.

• Tsetlin Machine: Simple BOW model for Tsetlin Machine without feature enhancement.

• Bi-GRU+Attn: Bi-directional GRUs are widely used for text classification. We compare
our model with Bi-GRU fed with pre-trained word embeddings along with attention layer
on top of it.

• TM+Bi-GRU+Attn: Proposed model with Bi-GRU model with pretrained word embed-
ding initialized with pretrained TM score in its input layer.

F.4.1 Performance Comparison with State-Of-The-Arts

Table F.3 shows the comparison of performance for selected datasets. As we can see that
traditional method such as TF-IDF with Logistic Regression (TF-IDF+LR) performs decently
in MR with 74.59, R8 with 93.74, and R8 with 86.95. Some sophisticated language model
such as CNN, and LSTM performs quite similarly. The only improvement seen among them is
Bi-LSTM which incorporates both past and future information for better input representation
thereby reaching 77.06% in MR, 96.68% in R8, and 90.54% in R52. Slightly different than
language models PV-DBOW and PV-DM performs poorly in all three datasets. Similarly, Graph-
based CNN and SWEM perform on par with the state-of-the-arts baselines. On the other hand,
the rule-based method TM performs quite comparable to baseline by reaching 75.14% in MR,
96.16% in R8, and 84.62% in R52. The performance is slightly below Bi-LSTM/GRU-based
model because of its restriction to use pre-trained word embedding. However, Yadav et al. [22]
show that embedding similar words using a pre-trained word embedding significantly enhances
the performance and outperforms the baselines. However, our proposed model only uses TM
explainability to generate prerequisite word weightage to replace human attention input into
neural network language models. Hence, this is demonstrated in the table as well. Even though
the motive of this task does not necessarily impact the accuracy but there is a slight increase
in performance anyway. This is due to the fact that the TM score gives additional weightage
to the model’s input thereby reaching 77.95% in MR, 97.53% in R8, and 95.71% in R52 for
TM+Bi-GRU+Attn. This shows an increment of about 1% in average throughout the selected
datasets.

196

F

Models MR R8 R52
TF-IDF+LR 74.59 93.74 86.95
CNN 74.98 94.02 85.37
LSTM 75.06 93.68 85.54
Bi-LSTM 77.68 96.31 90.54
PV-DBOW 61.09 85.87 78.29
PV-DM 59.47 52.07 44.92
SWEM 76.65 95.32 92.94
Graph-CNN-C 77.22 96.99 92.75
Tsetlin Machine 75.14 96.16 84.62
Bi-GRU+Attn 77.15 96.20 94.85
TM+Bi-GRU+Attn 77.95 97.53 95.71

Table F.3: Performance of the proposed model (TM+Bi-GRU+Attn) with selected baselines.

In addition to this, we also evaluate some more metrics that supports the performance of the
proposed model. Since MR is only binary classification dataset, R8 and R52 is multiclass dataset.
Hence, there is need of the evaluation of the performance of each class. Usually unbalanced or
multiclass datasets sometimes suffers with low F-scores because the model greedily learns the
majority classes. Hence to have a clear picture of our proposed model, we evaluate precision,
recall, and f-scores of main baseline TM, Bi-GRU+Attn with our proposed model TM+Bi-
GRU+Attn as shown in Tables F.4–F.6 respectively. The results clearly indicate the our proposed
model also performance superior on all three selected metrics for macro, micro, and weighted
form of measurement compared to baselines TM and Bi-GRU+Attn. The performance of our
proposed model is significantly higher in case of R8 and MR across all metrics. However
the difference in performance for R52 is very marginal. In case of comparison with TM, our
proposed outperforms all the measures for all three datasets.

Models MR R8 R52

Precision (macro) 73.22 86.12 79.18
Recall (macro) 70.42 87.44 75.44
F-Score (macro) 69.32 88.32 76.66
Precision (micro) 70.42 94.82 85.28
Recall (micro) 70.42 94.82 85.28
F-Score (micro) 70.42 94.82 85.28
Precision (weighted) 73.22 95.02 85.51
Recall (weighted) 70.42 95.12 85.12
F-Score (weighted) 69.32 95.02 85.28

Table F.4: Performance of TM for various evaluation metrics.

197

F

Models MR R8 R52
Precision (macro) 75.21 88.69 82.32
Recall (macro) 72.20 90.66 79.26
F-Score (macro) 71.34 89.26 79.87
Precision (micro) 72.20 95.52 95.63
Recall (micro) 72.20 95.52 95.63
F-Score (micro) 72.20 95.52 95.63
Precision (weighted) 75.21 95.60 95.33
Recall (weighted) 72.20 95.23 95.63
F-Score (weighted) 71.34 95.49 95.34

Table F.5: Performance of Bi-GRU+Attn for various evaluation metrics.

Models MR R8 R52
Precision (macro) 75.63 94.70 83.81
Recall (macro) 74.62 93.32 80.23
F-Score (macro) 74.61 93.39 80.67
Precision (micro) 74.62 96.52 96.82
Recall (micro) 74.62 96.52 96.82
F-Score (micro) 74.62 96.52 96.85
Precision (weighted) 75.63 96.58 96.51
Recall (weighted) 74.62 96.52 96.52
F-Score (weighted) 74.61 96.51 96.49

Table F.6: Performance of TM+Bi-GRU+Attn for various evaluation metrics.

F.4.2 Explainability

Here, we explore the proposed model’s explainability by visualizing the respective attention
weight. The attention weight usually gives the impact of each individual feature for a particular
prediction. However, such weight usually gives the relationship between input and the output,
such method of interpreting model can be beneficial for system to understand the impact of
each features. Since neural network are already an established blackbox models, one can use
this interpretation to generate explainability for the understanding the context of prediction.
Hence we define interpretation of the model as the weights obtained from attention layer and
explainability as use-case of interpretation to design the reasoning for a particular prediction that
is easily understandable to humans. For ease of illustration, we visualize the attention weight
of the Bi-GRU model and the attention weight of the Bi-GRU model initialized with TM’s
word score. We use the red color gradient to demonstrate the weightage of each input word
in the context. Dark color represents the higher weightage with light color representing lower
weightage. As we can see from Figure F.3, only using Bi-GRU, the model recognizes mostly
important words for predicting correct sentiment class. However, it is not perfect as the human
level. However, Figure F.4 shows the visualization of attention weight using Bi-GRU and TM’s
score.

198

F

Here we can see that the model focus on more significant words than the previous model.
For instance, in the first example, the later model captures “look”, “away” with higher weightage
which is an important context for negative sentiment than “directing” and “attempt”. This is more
clearly seen in the third sample as the first model focus on “easily”, “best”, and “film” however
our proposed model shifts the higher weightage to “best”, “Korean”, “film” for predicting the
positive sentiment. One of the most peculiar cases where there are ambiguities in the context
consisting of both positive and negative sentiment words as in the last example. Here using only
Bi-GRU, the model captures “forgettable”, “rip”, and “work” as thigh-impact words. However,
it does not give high weightage to the word “cheerful” which is also sentiment carrying word.
However, using our proposed model, the weightage changes drastically and the model assigns
higher weightage to “forgettable”, “cheerful”, “but”, and “earlier”. This makes more sense to
human understanding because the context the has word “cheerful” and it is contradicted with
the word “but” which eventually leads to a negative sentiment the carrying word “forgettable”
thereby making the whole context negative sentiment.

Figure F.3: Visualization of attention weights with Bi-GRU only. Dark red to light red color
represents the color gradients based on the attention weights in descending order.

Figure F.4: Visualization of attention weights with Bi-GRU and TM Score. Dark red to light red
color represents the color gradients based on the attention weights in descending order.

F.5 Conclusions

Recently, attention weights have been a great tool for visualization of the weightage of input
rationales in the model. However, their weightage sometimes gives higher weightage to unwanted

199

F

tokens that did not make sense to humans. This led to the requirement of human-annotated
rationales that are embedded into the models. Even, such human annotators are not a very
extensive task to obtain while annotating new datasets, the problems come annotating human
rationales to existing datasets. It takes high time and cost to re-annotate human rationales for
explainability. Hence, in this paper, we propose an alternative approach to get human explainable
rationales using interpretable Tsetlin Machine (TM). Since TM can be explained using logical
rules, it provides human-level interpretation and is used as a prerequisite annotation of input
rationales. The proposed model shows that embedding such information in attention-based
models not only increases the accuracy but also enhances the weightage of attention layer for
each input rationales thereby making the explanation more sensible to humans. The visualization
also shows that the proposed model is capable of capturing the ambiguity of the context much
better than traditional models.

However, the concern with current study of explainability in AI is the subjectivity of ex-
plainability. Even though the mode of interpreting a model has been very sophisticated with
proof of concept. It still fails to align with human understanding because of the subjectivity
of opinion. Hence, as a future work, one can collect the human rationales annotation while
manually labelling the particular datasets. This can be used as an evaluation criteria on how
explainability of ML models align with various human understanding.

200

F

Bibliography

[1] Y. Zhang, I. J. Marshall, and B. C. Wallace, “Rationale-augmented convolutional neural
networks for text classification,” Proceedings of the Conference on Empirical Methods in
Natural Language Processing. Conference on Empirical Methods in Natural Language
Processing, vol. 2016, pp. 795–804, 2016.

[2] W. Wang, N. Yang, F. Wei, B. Chang, and M. Zhou, “Gated self-matching networks for
reading comprehension and question answering,” in 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), (Vancouver, Canada), pp. 189–198,
Association for Computational Linguistics, July 2017.

[3] H. Lakkaraju, S. H. Bach, and J. Leskovec, “Interpretable decision sets: A joint frame-
work for description and prediction,” in 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’16, (New York, NY, USA), p. 1675–1684,
Association for Computing Machinery, 2016.

[4] C. J. Mahoney, J. Zhang, N. Huber-Fliflet, P. Gronvall, and H. Zhao, “A framework
for explainable text classification in legal document review,” 2019 IEEE International
Conference on Big Data (Big Data), pp. 1858–1867, 2019.

[5] M. T. Ribeiro, S. Singh, and C. Guestrin, “”why should i trust you?”: Explaining the
predictions of any classifier,” 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2016.

[6] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep networks,” in 34th
International Conference on Machine Learning - Volume 70, ICML’17, p. 3319–3328,
JMLR, 2017.

[7] O.-M. Camburu, T. Rocktäschel, T. Lukasiewicz, and P. Blunsom, “e-snli: Natural language
inference with natural language explanations,” in NeurIPS, 2018.

[8] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to
align and translate,” CoRR, vol. abs/1409.0473, 2015.

[9] A. Parikh, O. Täckström, D. Das, and J. Uszkoreit, “A decomposable attention model for
natural language inference,” in Conference on Empirical Methods in Natural Language
Processing, (Austin, Texas), pp. 2249–2255, Association for Computational Linguistics,
Nov. 2016.

[10] A. Vaswani, N. M. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin, “Attention is all you need,” ArXiv, vol. abs/1706.03762, 2017.

[11] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirec-
tional transformers for language understanding,” in Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), (Minneapolis, Minnesota), pp. 4171–4186, Association
for Computational Linguistics, June 2019.

201

F

[12] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional networks: Visual-
ising image classification models and saliency maps,” CoRR, vol. abs/1312.6034, 2014.

[13] S. Jain and B. C. Wallace, “Attention is not Explanation,” in Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), (Minneapolis, Minnesota), pp. 3543–
3556, Association for Computational Linguistics, June 2019.

[14] S. Wiegreffe and Y. Pinter, “Attention is not not explanation,” in Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), (Hong Kong, China), pp. 11–20,
Association for Computational Linguistics, Nov. 2019.

[15] Z. C. Lipton, “The mythos of model interpretability,” Queue, vol. 16, pp. 31 – 57, 2018.

[16] O.-C. Granmo, “The tsetlin machine - a game theoretic bandit driven approach to optimal
pattern recognition with propositional logic,” 2018.

[17] O.-C. Granmo, S. Glimsdal, L. Jiao, M. Goodwin, C. W. Omlin, and G. T. Berge, “The
Convolutional Tsetlin Machine,” 2019.

[18] R. K. Yadav, L. Jiao, O.-C. Granmo, and M. Goodwin, “Human-Level Interpretable
Learning for Aspect-Based Sentiment Analysis,” in AAAI, Vancouver, Canada, AAAI,
2021.

[19] B. Bhattarai, O.-C. Granmo, and L. Jiao, “Explainable tsetlin machine framework for fake
news detection with credibility score assessment,” 2021.

[20] K. D. Abeyrathna, B. Bhattarai, M. Goodwin, S. R. Gorji, O.-C. Granmo, L. Jiao, R. Saha,
and R. K. Yadav, “Massively parallel and asynchronous tsetlin machine architecture sup-
porting almost constant-time scaling,” in ICML, pp. 10–20, PMLR, 2021.

[21] R. K. Yadav, L. Jiao, O.-C. Granmo, and M. Goodwin, “Interpretability in Word Sense
Disambiguation using Tsetlin Machine,” in 13th International Conference on Agents and
Artificial Intelligence (ICAART), Vienna, Austria, INSTICC, 2021.

[22] R. K. Yadav, L. Jiao, O.-C. Granmo, and M. Goodwin, “Enhancing interpretable clauses
semantically using pretrained word representation,” in Fourth BlackboxNLP Workshop on
Analyzing and Interpreting Neural Networks for NLP, (Punta Cana, Dominican Republic),
pp. 265–274, Association for Computational Linguistics, 2021.

[23] O. Zaidan, J. Eisner, and C. Piatko, “Using annotator rationales to improve machine learning
for text categorization,” in Human Language Technologies 2007: The Conference of the
North American Chapter of the Association for Computational Linguistics, (Rochester,
New York), pp. 260–267, Association for Computational Linguistics, Apr. 2007.

[24] Y. Zhang, I. Marshall, and B. C. Wallace, “Rationale-augmented convolutional neural
networks for text classification,” in Conference on Empirical Methods in Natural Language
Processing, (Austin, Texas), pp. 795–804, Association for Computational Linguistics, Nov.
2016.

202

F

[25] K. Cho, B. van Merrienboer, Çaglar Gülçehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning phrase representations using rnn encoder–decoder for statistical
machine translation,” in EMNLP, 2014.

[26] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word representa-
tion,” in EMNLP, p. 1532–1543, 2014.

[27] F. Doshi-Velez and B. Kim, “Towards a rigorous science of interpretable machine learning,”
arXiv: Machine Learning, 2017.

[28] H. Liu, Q. Yin, and W. Y. Wang, “Towards explainable NLP: A generative explanation
framework for text classification,” in 57th Annual Meeting of the Association for Com-
putational Linguistics, (Florence, Italy), pp. 5570–5581, Association for Computational
Linguistics, July 2019.

[29] A. A. Freitas, “Comprehensible classification models: a position paper,” SIGKDD Explor.,
vol. 15, pp. 1–10, 2014.

[30] Q. Zhang, Y. N. Wu, and S.-C. Zhu, “Interpretable convolutional neural networks,” 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8827–8836, 2018.

[31] K. Xu, J. Ba, R. Kiros, K. Cho, A. C. Courville, R. Salakhutdinov, R. S. Zemel, and
Y. Bengio, “Show, attend and tell: Neural image caption generation with visual attention,”
in ICML, 2015.

[32] Y. Bao, S. Chang, M. Yu, and R. Barzilay, “Deriving machine attention from human ratio-
nales,” in Conference on Empirical Methods in Natural Language Processing, (Brussels,
Belgium), pp. 1903–1913, Association for Computational Linguistics, Oct.-Nov. 2018.

[33] A. K. Mohankumar, P. Nema, S. Narasimhan, M. M. Khapra, B. V. Srinivasan, and B. Ravin-
dran, “Towards transparent and explainable attention models,” in 58th Annual Meeting of
the Association for Computational Linguistics, (Online), pp. 4206–4216, Association for
Computational Linguistics, July 2020.

[34] T. McDonnell, M. Lease, M. Kutlu, and T. Elsayed, “Why is that relevant? collecting
annotator rationales for relevance judgments,” in HCOMP, 2016.

[35] X. Zhang, L. Jiao, O.-C. Granmo, and M. Goodwin, “On the Convergence of Tsetlin
Machines for the IDENTITY- and NOT Operators,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2021.

[36] J. Sharma, R. Yadav, O.-C. Granmo, and L. Jiao, “Human Interpretable AI: Enhancing
Tsetlin Machine Stochasticity with Drop Clause,” arXiv preprint arXiv:2105.14506, 2021.

[37] J. Lei, A. Wheeldon, R. Shafik, A. Yakovlev, and O.-C. Granmo, “From Arithmetic to
Logic Based AI: A Comparative Analysis of Neural Networks and Tsetlin Machine,” in
27th IEEE International Conference on Electronics Circuits and Systems (ICECS2020),
IEEE, 2020.

203

F

[38] J. Lei, T. Rahman, R. Shafik, A. Wheeldon, A. Yakovlev, O.-C. Granmo, F. Kawsar, and
A. Mathur, “Low-Power Audio Keyword Spotting Using Tsetlin Machines,” Journal of
Low Power Electronics and Applications, vol. 11, 2021.

[39] T. Mikolov, M. Karafi, and S. Khudanpur, “Recurrent neural network based language
model,” in INTERSPEECH, 2010.

[40] J. Chung, Çaglar Gülçehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recurrent
neural networks on sequence modeling,” ArXiv, vol. abs/1412.3555, 2014.

[41] B. Pang and L. Lee, “Seeing stars: Exploiting class relationships for sentiment categoriza-
tion with respect to rating scales,” in ACL, (Michigan, USA), p. 115–124, ACL, 2005.

[42] J. Tang, M. Qu, and Q. Mei, “Pte: Predictive text embedding through large-scale hetero-
geneous text networks,” in 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’15, (Sydney, NSW, Australia), p. 1165–1174, Associa-
tion for Computing Machinery, 2015.

[43] F. Chollet et al., “Keras.” https://keras.io, 2015.

[44] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR,
vol. abs/1412.6980, 2015.

[45] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout:
a simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res., vol. 15,
pp. 1929–1958, 2014.

[46] Y. Kim, “Convolutional neural networks for sentence classification,” in Conference on
Empirical Methods in Natural Language Processing (EMNLP), (Doha, Qatar), pp. 1746–
1751, Association for Computational Linguistics, Oct. 2014.

[47] P. Liu, X. Qiu, and X. Huang, “Recurrent neural network for text classification with
multi-task learning,” in IJCAI, p. 2873–2879, 2016.

[48] Q. Le and T. Mikolov, “Distributed representations of sentences and documents,” in 31st
International Conference on Machine Learning, vol. 32 of Machine Learning Research,
(Bejing, China), pp. 1188–1196, PMLR, 22–24 Jun 2014.

[49] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for efficient text
classification,” in EACL: Volume 2, Short Papers, (Valencia, Spain), pp. 427–431, ACL,
2017.

[50] D. Shen, G. Wang, W. Wang, M. R. Min, Q. Su, Y. Zhang, C. Li, R. Henao, and L. Carin,
“Baseline needs more love: On simple word-embedding-based models and associated
pooling mechanisms,” in ACL (Volume 1: Long Papers), (Melbourne, Australia), pp. 440–
450, ACL, 2018.

204

https://keras.io

[51] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on
graphs with fast localized spectral filtering,” in Advances in Neural Information Processing
Systems (D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, eds.), vol. 29, Curran
Associates, Inc., 2016.

205

	Abstract
	List of Publications
	List of Figures
	List of Tables
	I Main Chapters
	Introduction
	Motivation and Research Questions
	Publications
	Thesis Outline

	Background
	Interpretable Machine Learning
	Linear Regression
	Decision Tress
	Naive Bayes Classifier
	Tsetlin Machine

	Deep Learning
	Deep Neural Networks
	Recurrent Neural Network
	Long-Short Term Memory (LSTM)
	Transformers

	Text Representation
	Bag-of-words
	Word2Vec Embedding
	Global Vectors (GloVe)
	Embedding from Language Models (ELMo)
	Bidirectional Encoder Representations from Transformers (BERT)

	Summary

	 Contributions
	Interpretable Text Classification Using TM
	Bag-of-words based Text Classification
	Basic Concept of TM for Classifying Word Senses
	Interpretable Classification Process
	Results

	Position Dependent Text Classification
	Input Binarization
	The TM based ABSA
	Results

	Enhancing Interpretable Clauses and Performance of TM
	Boosting TM BOW with Semantically Related Words
	Input Feature Extraction from Distributed Word Representation
	Similar Words based on Top k Nearest Words
	Similar Words within Cosine Angle Threshold
	Distributed Word Representation in TM
	Results

	Robust Text Classification against Spurious Correlations
	Learning Rule-based Clauses for Counterfactual Inference
	Robustness against Counterfactual Sample
	Results

	Interpretable Text Classification Using Neural Network
	Position Dependent Text Classification without Positional Embedding
	Preprocessing
	Architecture description
	Results

	Enhancing Attention's Explanation Using TM
	Clause Score from TM Architecture
	Attention-based Neural Network
	Results

	Summary

	Conclusions and Future Work
	Conclusions to the Research Questions
	Interpretable Text Classification Using TM
	Bag-of-Words (BOW) based Text Classification
	Position Dependent Text Classification
	Enhancing Performance of TM
	Robust Text Classification against Spurious Correlations

	Interpretable Text Classification Using Neural Network
	Position Dependent Text Classification without Positional Embedding
	Enhancing Attention's Explanation Using TM

	Future Works

	Bibliography

	II Appended Papers
	Paper A
	Introduction
	Related Work
	System Architecture for Word Sense Disambiguation
	Basic Concept of Tsetlin Machine for Classifying Word Senses
	Training of the Proposed Scheme
	Interpretable Classification Process

	Evaluations
	Conclusions

	Bibliography
	Paper B
	Introduction
	Related Work
	Methodology
	Input Binarization
	The Tsetlin Machine Based ABSA
	The Learning Process of TM Based ABSA

	Experiment Results
	Datasets
	Baselines
	Results

	Interpretability and Analysis
	Characteristics of Clauses
	A Case Study for Interpretability

	Conclusions

	Bibliography
	Paper C
	Introduction
	Related Work
	Sentiment Analysis
	ABSA based on LSTM
	Positional embedding based ABSA

	Proposed Method
	Preprocessing
	Architecture description
	Bidirectional Gated Recurrent Unit (Bi-GRU)
	Attention Layer

	Experiment Results and Evaluations
	Datasets
	Compared Methods
	Hardware configuration
	Performance Comparison and Analysis
	Error and Sensitivity Analysis
	Effect of input representations
	Effect of dropout rate
	Effect of Opinion Lexicon and Masked Aspect Embedding

	Two-class sentiment classification
	Case studies

	Conclusions

	Bibliography
	Paper D
	Introduction
	Related Work
	Boosting TM BOW with Semantically Related Words
	Input Feature Extraction from Distributed Word Representation
	Similar Words based on Top k Nearest Words
	Similar Words within Cosine Angle Threshold

	Tsetlin Machine-based Classification
	Tsetlin Machine Architecture
	Distributed Word Representation in TM

	Experiments and Results
	Datasets
	TM Parameters
	Performance When Using Top k Nearest Neighbors
	Performance When Using Neighbors Within a Similarity Threshold
	Comparison with Baselines
	Interpretation

	Conclusions

	Bibliography
	Paper E
	Introduction
	Related Work
	Detailed Implementation
	Tsetlin Machine
	Learning Rule-based Clauses for Counterfactual Inference
	Robustness against Counterfactual Sample

	Experiments and Results
	A Case Study of TM vs Bi-LSTM
	Conclusions

	Bibliography
	Paper F
	Introduction
	Related Work
	Proposed Architecture: TM Initialized Attention Model
	Clause Score from Tsetlin Machine Architecture
	Attention Based Neural Network

	Experiments and Results
	Performance Comparison with State-Of-The-Arts
	Explainability

	Conclusions

	Bibliography

